tính giới hạn:
\(_{lim_{x->0}}\frac{1-\sqrt{12x+1}}{4x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do (SAB) và (SAC) vuông góc với đáy (ABC)
Và (ABC) ∩ (SAC) = SA nên SA ⊥ (ABC)
BC ⊥ AH, BC ⊥ SA
⇒ BC ⊥ ((SAH)
Mà BC ⊂ (SBC) nên (SAH) ⊥ (SBC)
SA vg (ABC)=> SAB,SAC vuông
SA vg BC, AB vg BC => BCvg (SAB) =>SB vg BC=> SBC vuông
vậy all mặt đều vuông
\(\hept{\begin{cases}SA\perp\left(ABC\right)\\AB\subset\left(ABC\right)\end{cases}}\) \(\Rightarrow SA\perp AB\Rightarrow\) tam giác SAB vuông (1)
\(\hept{\begin{cases}SA\perp\left(ABC\right)\\AC\subset\left(ABC\right)\end{cases}\Rightarrow AC\perp SA\Rightarrow}\) tam giác SAC vuông (2)
Tam giác ABC vuông tại B (gt) (3)
\(\Rightarrow AB\perp BC\)
\(\hept{\begin{cases}SA\perp\left(ABC\right)\\BC\subset\left(ABC\right)\end{cases}\Rightarrow SA\perp BC}\)
\(\hept{\begin{cases}AB\perp BC\\SA\perp BC\end{cases}\Rightarrow\hept{\begin{cases}BC\perp\left(SAB\right)\\SB\subset\left(SAB\right)\end{cases}\Rightarrow}SB\perp BC\Rightarrow}\) Tam giác SBC vuông (4)
\(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\Rightarrowđpcm\)
\(lim_{x\rightarrow0}\left(\frac{1-\sqrt{12x+1}}{4x}\right)\)
=\(lim_{x\rightarrow0}\frac{1-\sqrt{12x+1}}{4x}\cdot\frac{1+\sqrt{12x+1}}{1+\sqrt{12x+1}}\)
=\(lim_{x\rightarrow0}\left(\frac{\left(1-\sqrt{12x+1}\right)\cdot\left(1+\sqrt{12x+1}\right)}{4x\cdot\left(1+\sqrt{12x+1}\right)}\right)\)
=\(lim_{x\rightarrow0}\left(\frac{1-12x-1}{4x\cdot\left(1+\sqrt{12x+1}\right)}\right)\)
=\(lim_{x\rightarrow0}\left(\frac{-12x}{4x\cdot\left(1+\sqrt{12x+1}\right)}\right)\)
=\(lim_{x\rightarrow0}\left(\frac{-12}{4\cdot\left(1+\sqrt{12x+1}\right)}\right)\)
=\(lim_{x\rightarrow0}\left(\frac{-3}{1+\sqrt{12x+1}}\right)\)
=\(-\frac{3}{1+1}\)
=\(-\frac{3}{2}\)