Cho tam giác ABC có 3 góc nhọn,các đường cao BD,CE.Gọi I,K thứ tự là hình chiếu của B và C trên đth ED.CMR : EI=DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé
Gọi AJ là đường trung tuyến của \(\Delta\)ABC. Đường thẳng qua N song song AB cắt BC tại P.
Đường thẳng qua C song song AB cắt đường thẳng qua M song song BC và AJ lần lượt tại Q,R.
Ta thấy \(\Delta\)MAN có đường cao AI đồng thời là đường phân giác nên \(\Delta\)MAN cân tại A
=> I cũng là trung điểm cạnh MN. Từ đó \(\Delta\)MBI = \(\Delta\)NPI (g.c.g) => NP = BM; ^INP = ^IMB
Mà NP // BM // CQ, BM = CQ nên NP // QC, NP = QC => Tứ giác NPQC là hình bình hành
Nếu ta gọi K là trung điểm PC thì N,K,Q thẳng hàng
Chú ý rằng \(\Delta\)NPC ~ \(\Delta\)ABC (g.g) với trung tuyến tương ứng NK,AJ => \(\Delta\)NPK ~ \(\Delta\)ABJ (c.g.c)
=> ^PNQ = ^PNK = ^BAJ. Kết hợp với ^INP = ^IMB (cmt) suy ra ^MNQ = ^INP + ^PNQ = ^BAJ + ^IMB (1)
Mặt khác: \(\Delta\)ABJ = \(\Delta\)RCJ (g.c.g) => AB = CR < AC => ^BAJ = ^CRJ > CAJ
Điều đó có nghĩa là ^BAJ > ^BAC/2 = ^BAI => ^BAJ + ^IMB > ^BAI + ^IMB = 900 (2)
Từ (1) và (2) suy ra ^MNQ > 900 => MQ là cạnh lớn nhất trong \(\Delta\)QMN => MN < MQ = BC
Vậy MN < BC.
TH1: M nằm giữa A và B
kẻ MQ_|_ DC tại Q
FN_|_DC tại N
EH_|_DC tại H
ta có E là trung điểm của BD; F là trung điểm của AC
=> EF là đuờng trung bình ứng với cạnh DC
=> EF//DC
ta có MQ_|_DC tại Q mà EF//DC
=> MQ_|_EF tại R
ta có: EH_|_DC
FN_|_DC
MQ_|_DC
MK_|_DC
=> EH//FN//MQ//MK
ta có góc MFE= góc FKD(MK chung và EF//NK)
xét 2 tam giác vuông MFR và FKN có:
FM=FK(gt)
góc MFE= góc FKD(cmt)
=> tam giác FMR=tam giác FKN(CH-GN)
=> RF=NK(1)
ta có góc MEF=góc EHC( do MH chung và EF//DC)
xét 2 tam giác vuông MER và EHP có:
góc MEF= góc EHC(cmt)
ME=EH(gt)
=> tam giác MER= tamgiác EHP(CH-GN)
=> ER=HP(2)
ta có: EF//PN
EH//FN
=> EF=HN(3)
từ (1)(2)(3) =>
EF=HN
RF=NK
ER=HP
ta có : HK=HP+PN+NK=ER+RF+EF=EF+EF
=>HK=2EF
TH2:M trùng A=> AC trùng MK=> C trùng K
M trùng A nên ME cũng trùng MH
kẻ FP//EH ( P thuộc DC)
xét tam giác EAB và tam giác EHD có':
góc AEB= góc DEH(2 góc đối đỉnh)
ED=EB(gt)
góc BAE= góc EHD( AB//CD)
=> tam giác EAB= tam giác EHD(g.c.g)
=> AE=EH=1/2AH
ta có: E là trung điểm của AH; F là trung điểm của AC
=> EF là đường trung bình của tam giác AHC
=> EF//DC
EH//FP
=>tứ giác EFPH là hình bình hành
=> EH=FP
xét tam giác AEF và tam giác FCPcó:
AF=FC(gt)
góc AFE= góc FCP(EF//DC)
EH=FP(cmt)
=> tam giác AEF= tam giác FCP(c.g.c)
=>EF=PC
mà EF=HP( do tứ giác EFPH là hình bình hành)
=> EF=HP=PK
ta có: HK=HP+PK=EF+EF=2EF
TH3:M trùng B=>BD trùng MH và BF trùng MK
kẻ EP // FK
xét tam giác FBA và tam giác FKC có:
FA=FC(gt)
góc AFB= góc KFC( 2 góc đối đỉnh)
góc BAF= góc KCF( AB//CD)
=> tam giác FBA= tam giác FKC(g.c.g)
=> FB=FK
ta có E là trung điểm của BD ; F là trung điểm của BK
=> EF là đường trung bình của tam giác BDK
=> EF//PK
mà EP//FK
=> EF=PK và EP=FK
ta có: EF//DP
BF//EP
=> góc EBF= góc DEP
xét tam giác BEF và tam giác EDP có:
ED=EB(gt)
góc BEF= góc EDP(EF//DC)
góc DEP= góc EBF(cmt)
=> tam giác BEF= tam giác EDP(g.c.g)
=> DP=EF và bằng PK
ta có: HK=(hay DP)HP+PK=EF+EF
=> HK=2EF
từ 3 trường hợp nêu trên => nếu M nằm giữa AB, M trùng A hoặc M trùng B thì độ dài của HK vẫn không đổi và luôn bằng 2EF
vậy độ dài của HK không đổi và luôn bằng 2EF khi M di động trên AB
vì HK luôn bằng 2EF nên độ dài k đổi khi M di động trên AB
\(a^7-a=a\left(a^6-1\right)=a\left(a^3+1\right)\left(a^3-1\right)\)
Với a, b thuộc Z và không chia hết cho 7
Theo định lí fecmat: \(a^6\equiv1\left(mod7\right)\); \(b^6\equiv1\left(mod7\right)\)(1)
Đặt: \(a^6=u;b^6=v\)
Ta có: \(a^{42}-b^{42}=u^7-v^7=\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)\)
Từ (1) => \(u-v\equiv1-1\equiv0\left(mod7\right)\)=> \(u-v⋮7\)
và \(u^6;u^5v;u^4v^2;u^3v^3;u^2v^4;uv^5;v^6\equiv1\left(mod7\right)\)
\(\Rightarrow u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\equiv1+1+1+1+1+1+1\equiv7\equiv0\left(mod7\right)\)
=> \(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6⋮7\)
=> \(\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)⋮49\)
Vi tu giac ABCD co ^A = ^C = 90o => ^B + ^D = 180o
Kẻ phân giác DF , BE
Xét \(\Delta BEC\)vuông tại C nên \(\widehat{CBE}+\widehat{CEB}=90^o\)
\(\Rightarrow2\left(\widehat{CBE}+\widehat{CEB}\right)=180^o\)
\(\Rightarrow\widehat{CBA}+2\widehat{CEB}=180^o\)
Tuong tu \(\widehat{CDA}+2\widehat{AFD}=180^o\)
\(\Rightarrow\left(\widehat{CBA}+\widehat{CDA}\right)+2\left(\widehat{CEB}+\widehat{AFD}\right)=360^o\)
\(\Leftrightarrow180^o+2\left(\widehat{CEB}+\widehat{AFD}\right)=360^o\)
\(\Leftrightarrow\widehat{CEB}+\widehat{AFD}=90^o\)
\(\Rightarrow\widehat{CBE}=\widehat{AFD}\)(Cùng phụ \(\widehat{CEB}\))
\(\Rightarrow\widehat{ABE}=\widehat{AFD}\)(Phan giac)
\(\Rightarrow FD//\left(h\right)\equiv BE\left(dpcm\right)\)
Xét tứ giác AOBC1 có: hai đường chéo AB và OC1 cắt nhau tại trung điểm P mỗi đường chéo
=>AOBC1 là hình bình hành
=> AC1//=OB (1)
Xét tứ giác OBA1C có hai đường chéo OA1và BC cắt nhau tại trung điểm M của mỗi đường chéo.
=> OBA1C là hình bình hành
=> OB//=A1C (2)
Từ (1), (2) => AC1//=A1C
=> AC1A1C là hình bình hành.
=> AA1 và CC1 cắt nhau tại trung điểm của mỗi đường chéo
Chứng minh tương tự:
BC1//=AO//=B1C
=> BC1B1C là hình bình hành
=> BB1 và CC1 cắt nhau tại trung điểm của mỗi đường chéo
=> AA1; BB1; CC1 đồng quy.
\(x^3+3xy+y^3-1=\left(x^3+y^3\right)+\left(x^2+2xy+y^2-1\right)-\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y-1\right)\left(x+y+1\right)-\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y-1\right)+\left(x+y-1\right)\left(x+y+1\right)\)
\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
\(x^3+3xy+y^3-1\)
\(=\left(x+y\right)^3-1-3x^2y-3xy^2+3xy\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)
Ta có 1+c2=ab+bc+ca+c2=(a+c)(b+c)
Tương tự 1+a2=(a+b)(a+c)
1+b2=(a+b)(b+c)
Suy ra \(\frac{a-b}{1+c^2}=\frac{a-b}{\left(a+c\right)\left(b+c\right)}=\frac{1}{c+b}-\frac{1}{c+a}\)
\(\frac{b-c}{1+a^2}=\frac{b-c}{\left(a+b\right)\left(a+c\right)}=\frac{1}{a+c}-\frac{1}{a+b}\)
\(\frac{c-a}{1+b^2}=\frac{c-a}{\left(a+b\right)\left(b+c\right)}=\frac{1}{a+b}-\frac{1}{b+c}\)
\(\Rightarrow\frac{a-b}{1+c^2}+\frac{b-c}{1+a^2}+\frac{c-a}{1+b^2}=\frac{1}{c+b}-\frac{1}{c+a}+\frac{1}{a+c}-\frac{1}{a+b}+\frac{1}{a+b}-\frac{1}{b+c}=0\)
Gọi O là trung điểm BC, J là trung điểm DE. Do tam giác BEC vuông tại E mà EO là trung tuyến ứng với cạnh huyền nên OE = OB = OC. Tương tự OD = OB = OC. Từ đó ta có OE = OD hay tam tam giác OED cân tại O.
Lại có J là trung điểm DE nên \(OJ\perp DE\). Vậy thì OJ // BI // CK. Mà O là trung điểm BC nên OJ là đường trung bình hình thang CBKI. Vậy thì JI = JK.
Ta có \(JI=JK\Rightarrow JI-JE=JK-JD\Rightarrow EI=DK\left(đpcm\right)\)
khó thế !