Tìm các số tự nhiên x,y khác 0 biết 4x+1 chia hết cho y và 4y+1 chia hết cho x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+5^x=2^y+5.2^z\)
+) Với \(x\inℕ^∗\)
Xét: VT = \(1+5^x\)chia 4 dư 2 và chia 5 dư 1
+) Với \(y,z\inℕ^∗\)
Xét VP = \(2^y+5.2^z\)
TH1: y , z > 1
=> VP = \(2^y+5.2^z\)chia hết cho 4
=> loại
TH2: y , z = 1
=> VP = 12 chia hết cho 4
=> loại
TH3: y = 1, z > 1
=> VP = \(2+5.2^z\)chia 5 dư 2
=> loại
TH4: y > 1, z = 1
=> Ta có phương trình: \(5^x=2^y+9\)
Với y = 2 thì \(5^x=13\)loại
Với y > 2. khi đó: \(2^y+9\) chia 8 dư 1 => \(5^x\)chia 8 dư 1 => x là số chẵn => Đặt x = 2k ( k là số tự nhiên >1)
Ta có phương trình:\(5^{2k}-9=2^y\)
<=> \(\left(5^k-3\right)\left(5^k+3\right)=2^y\)
Khi đó tồn tại hai số tự nhiên a, b sao cho: a + b = y và a > b để:
\(\hept{\begin{cases}5^k+3=2^a\\5^k-3=2^b\end{cases}}\)=> \(2^a-2^b=6\)(1)
Với : b > 2 => \(2^a-2^b⋮8\)loại
Với : b = 2 => \(2^a-4=6\)=> loại
Với b = 1 => \(2^a-2=6\)=> \(2^a=8=2^3\)=> a = 3
Với b = 0 => \(2^a-1=6\)loại
Vậy b = 1 và a = 3 là thỏa mãn (1)
=> y = a + b = 4
=> \(5^x=2^4+9=25=5^2\)
=> x = 2
Ta thử lại với x = 2; y = 4 ; z = 1 thấy thỏa mãn
Vậy: x =2 ; y = 4 ; z = 1.
+) Nhận xét: Nếu a + b = 1 thì f(a) +f(b) = 1. Thật vậy:
Ta có: f(a) + f(b) = \(\frac{100^a}{100^a+10}+\frac{100^b}{100^b+10}=\frac{100^{a+b}+10.100^a+100^{b+a}+10.100^b}{\left(100^a+10\right)\left(100^b+10\right)}\)
\(=\frac{100^1+10.\left(100^a+100^b\right)+100^1}{100^{a+b}+10.\left(100^a+100^b\right)+100}=\frac{200+10.\left(100^a+100^b\right)}{200+10.\left(100^a+100^b\right)}=1\)
+) Áp dụng:
\(f\left(\frac{1}{2015}\right)\) + \(f\left(\frac{2}{2015}\right)\)+ \(f\left(\frac{3}{2015}\right)\)+ ... + \(f\left(\frac{2014}{2015}\right)\)
= \(\left[f\left(\frac{1}{2015}\right)+f\left(\frac{2014}{2015}\right)\right]+\left[f\left(\frac{2}{2015}\right)+f\left(\frac{2013}{2015}\right)\right]+...+\left[f\left(\frac{1007}{2015}\right)+f\left(\frac{1008}{2015}\right)\right]\)
= 1 + 1 + ...+ 1 (có 2014 : 2 = 1007 số 1)
= 1007
Theo giả thiết suy ra \(\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)\(\Rightarrow\)\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{z+x-\left(y+z\right)}{ac-bc}=\frac{x-y}{c\left(a-b\right)}\) (1)
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{y+z-\left(x+y\right)}{bc-ab}=\frac{z-x}{b\left(c-a\right)}\) (2)
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{x+y-\left(z+x\right)}{ab-ac}=\frac{y-z}{a\left(b-c\right)}\) (3)
Từ (1), (2), (3) suy ra \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\) (đpcm).
Chúng ta dùng kiến thức lớp 7 để chứng minh bài này như sau:
Trên tia BA lấy điểm H sao cho BH = AC. Sau đó vẽ hình chữ nhật AHKD. Nối BK, EK.
Ta thấy AH = 2AB; AE = 2AB nên AH = AE.
Vậy ta thấy ngay \(\Delta BAE=\Delta EDK\left(c-g-c\right)\Rightarrow BE=EK;\widehat{BEA}=\widehat{EKD}\)
hay \(\widehat{BEK}=90^o\) và EB = EK. Vậy tam giác BEK là tam giác vuông cân tại E. Suy ra \(\widehat{BKE}=45^o\)
Ta cũng có \(\Delta BHK=\Delta CBA\left(c-g-c\right)\Rightarrow\widehat{HBK}=\widehat{BCA}\)
Do AHKD là hình chữ nhật nên HB // DK, suy ra \(\widehat{HBK}=\widehat{BKD}\) (So le trong)
Vậy nên \(\widehat{ACB}+\widehat{BEA}=\widehat{HBK}+\widehat{EKD}=\widehat{BKD}+\widehat{EKD}=\widehat{BKE}=45^o\) (đpcm)
Ta có: \(\frac{2x-4y}{39}=\frac{4z-3x}{26}=\frac{3y-2z}{52}\)
\(\Rightarrow\frac{39\left(2x-4y\right)}{39.39}=\frac{26\left(4z-3x\right)}{26.26}=\frac{52\left(3y-2z\right)}{52.52}\)
\(\Rightarrow\frac{78x-156y}{1521}=\frac{104z-78x}{676}=\frac{156y-104z}{2704}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{78x-156y}{1521}=\frac{104z-78x}{676}=\frac{156y-104z}{2704}=\frac{78x-156y+104z-78x+156y-104z}{1521+676+2704}=\frac{0}{4901}=0\)
Do đó: \(\hept{\begin{cases}\frac{2x-4y}{39}=0\\\frac{4z-3x}{26}=0\\\frac{3y-2z}{52}=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-4y=0\\4z-3x=0\\3y-2z=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=4y\\4z=3x\\3y=2z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{2}\\\frac{z}{3}=\frac{x}{4}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=k\)\(\Rightarrow\hept{\begin{cases}x=4k\\y=2k\\z=3k\end{cases}}\)
Ta có: \(A=2018-2x-11y+10z=2018-2.4k-11.2k+10.3k=2018-8k-22k+30k\)
\(A=2018-\left(8k+22k-30k\right)=2018-0=2018\)
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{p}\)⇔ p(x+y)=xy (1)
Vì p là số nguyên tố nên suy ra trong hai số x,y luôn có 1 số chia hết cho p.
Không mất tính tổng quát ta giả sử: x ⋮ p ⇒ x=kp (k∈N∗)
Nếu k=1, thay vào (1) ta được: p(p+y)=p ⇒ p+y=1, vô lí.
Do đó k≥2. Từ (1) suy ra: p(kp+y)=kp.y ⇔ y=\(\frac{kp}{k-1}\)
Do y∈N∗ mà (k;k−1)=1 ⇒ p ⋮ k−1 ⇒ k−1∈{1;p}
∙ k−1=1 ⇒ k=2⇒x=y=2p
∙ k−1 = p ⇒ k=p+1 ⇒ x=p(p+1),y=p+1
Vậy phương trình có ba nghiệm là: (2p;2p),(p+1;p2+p),(p2+p;p+1).
a, b, c là 3 cạnh của tam giác vuông => a, b, c>0
Chứng minh \(a^{2n}+b^{2n}\le c^{2n}\) (1) quy nạp theo n.
+) Với n=1 \(a^2+b^2=c^2\) ( đúng)
+) Với n=2 \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)
=> (1) đúng với n=2
+) G/s: (1) đúng với n . Nghĩa là: \(a^{2n}+b^{2n}\le c^{2n}\)
Ta chứng minh (1) đúng với n+1
Thật vậy ta có:
\(a^{2\left(n+1\right)}+b^{2\left(n+1\right)}=a^{2n+2}+b^{2n+2}=a^{2n}.a^2+b^{2n}.b^2^{ }\)
\(=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\le c^{2n}.c^2-a^2b^{2n}-a^{2n}.b^2< c^{2n}.c^2=c^{2\left(n+1\right)}\)
=> (1) đúng với n+1
Vậy (1) đúng với mọi n>0
'Vậy \(a^{2n}+b^{2n}\le c^{2n}\)
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Bài 1:
a)\(\frac{7}{29}+\frac{11}{47}-\frac{3}{5}+\frac{22}{29}-\frac{58}{47}\)
\(=\left(\frac{7}{29}+\frac{22}{29}\right)+\left(\frac{11}{47}-\frac{58}{47}\right)-\frac{3}{5}\)
\(=1+\left(-1\right)-\frac{3}{5}=\frac{-3}{5}\)
b) \(\left|-\frac{3}{7}\right|:\left(-3\right)^2-\sqrt{\frac{4}{49}}\)
\(=\frac{3}{7}:9-\frac{2}{7}\)
\(=\frac{1}{21}-\frac{2}{7}=\frac{1}{21}-\frac{6}{21}=\frac{-5}{21}\)
Bài 2:
a) \(\frac{1}{2}+\frac{2}{3}x=\frac{5}{6}\)
\(\frac{2}{3}x=\frac{5}{6}-\frac{1}{2}\)
\(\frac{2}{3}x=\frac{5}{6}-\frac{3}{6}\)
\(\frac{2}{3}x=\frac{1}{3}\)
\(x=\frac{1}{3}.\frac{3}{2}\)
\(x=\frac{1}{2}\)
b) \(\left|x-1\right|=7x\)( cái này đề mk ko hiểu nên mình làm đề bài ntn nhá)
\(\Rightarrow\orbr{\begin{cases}x-1=7x\\x-1=-7x\end{cases}\Leftrightarrow\orbr{\begin{cases}x-7x=1\\x+7x=1\end{cases}}}\Leftrightarrow\orbr{\begin{cases}-6x=1\\8x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{1}{8}\end{cases}}}\)
cách làm kiểu gì vậy bạn ơi giúp mình đi
Tìm x,y thuộc z sao cho 3x+1:hết cho y và 3y+1 :hết cho x? bn dựa vào bài này để lm bài kia nhé nó giống nhau đấy mk ko muốn trình bày mỏi tay lw
Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3)
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13.
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên)
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13)
2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0.
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y.
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên)
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7)
3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y.
Ta đặt y1 = - y > 0.
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x.
3a. y1 ≤ x
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3)
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên)
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2)
3b. x < y1
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3)
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên)
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7)
Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2)
-------------
Kết luận: tất cả các nghiệm:
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4)
-----------
Tất nhiên là tôi chưa kiểm tra lại