K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2015

(q+p) : 2 co ket qua la 1 so nam giua p va q

Ma p va q la 2 so nguyen to lien tiep nen (q+p):2 ko la so nguyen to(1)

2<p<q nen p va q la 2 so le nen (p+q) chia het cho 2(2)

tu (1) va (2) suy ra (p+q):2 la hop so

2 tháng 3 2015

.q>p => p/2>p/2 => p/2+q/2>p/2+p/2 hay (q+p)/2>p (1)

.p<q => p/2<q/2 => p/2+q/2<q/2+q/2 hay (p+q)/2<q (2)

từ (1),(2) => p<(p+q)/2<q

do (p+q)/2 nằm giữa 2 SNT liên tiếp nên (p+q)/2 là hợp số

 

 

4 tháng 3 2020

Ta có:

10001000<C<10001+10002+...+1000100010001000<C<10001+10002+...+10001000

1000...00 (3000 chữ số)<C<100100...100 (3001 chữ số)

Vậy, 3 chữ số đầu tiên của C là: 100

4 tháng 3 2020

ooooooooo me may

22 tháng 2 2018

A B C M O I x

Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ ^CAx=^OAB. Trên Ax lấy điểm I sao cho AO=AI

Nối I với O và C.

Xét \(\Delta\)AMB và \(\Delta\)AMC:

AB=AC

AM chung            => ^MAB < ^MAC hay ^OAB < ^OAC

MB<MC

Mà ^OAB=^IAC => ^IAC < ^OAC

Xét \(\Delta\)AIC và \(\Delta\)AOC:

Cạnh AC chung

^IAC < ^OAC               => IC < OC

AI=AO

Xét \(\Delta\)OCI có: IC < OC => ^OIC > ^IOC (1)

Ta có: Tam giác OAI: AO=AI => \(\Delta\)OAI cân tại A => ^AIO=^AOI  (2)

Từ (1) và (2) => ^OIC+^AIO > ^IOC+^AOI => ^AIC > ^AOC (3)

Sau đó c/m \(\Delta\)AOB=\(\Delta\)AIC (c.g,c) => ^AIC=^AOB (4)

Từ (3) và (4) => ^AOB > ^AOC (đpcm).

24 tháng 2 2020

cuhevhuvhuvwvvfrbuvhfevhvhwreuv(hhhuvfuhevhhfuevhheuwevhehuhfuhhuueuhhfehvfhfhuwehhuuhvweihhhfehrihffreihfhreufhrefhuhefwfhheffuhewfuhibfewihubfefevubfềvuheb&bvefhbuveufded

16 tháng 1 2020

A D E B C I M N K F

a) +) Chứng minh \(\Delta\)DAC = \(\Delta\)BAE 

Thật vậy: Ta có: AD = AB ( \(\Delta\)DAB đều ) 

                         ^DAB = ^CAE ( = 60\(^o\); \(\Delta\)DAB đều ; \(\Delta\)CAE đều ) => ^DAC = ^BAE 

                           CA = AE ( \(\Delta\)CAE đều )

Từ 3 điều trên => \(\Delta\)DAC = \(\Delta\)BAE ( c.g.c) (1)

=>  ^ABE = ^ADC (2)

+) Xét \(\Delta\)KAD và \(\Delta\)KIB có: ^DKA = ^BKI ( đối đỉnh )

                                                  ^KDA = ^KBI( theo  ( 2)  )

                    mà ^DKA + ^KDA + ^KAD= ^BKI + ^KBI + ^KIB = 180\(^o\)

=>  ^KIB = ^KAD = ^BAD=  60\(^o\)

=> ^DIB = 60\(^o\)

b) Từ (1) => DC = BE mà M là trung điểm DC; N là trung điểm BE 

=> DM  = BN (3) 

+) Xét \(\Delta\)BAN và \(\Delta\)DAM 

có: BN = DM ( theo (3)

     ^ABN = ^ADM ( theo (2)

     AB = AD ( \(\Delta\)ADB đều )

=> \(\Delta\)BAN = \(\Delta\)DAM  (4) 

=> AN = AM  => \(\Delta\)AMN cân tại A  (5)

+) Từ (4) => ^BAN = ^DAM => ^BAM + ^MAN = ^DAB + ^BAM  

=> ^MAN = ^DAB = 60\(^o\)(6)

Từ (5); (6) => \(\Delta\)AMN đều 

c) +) Trên tia đối tia MI lấy điểm F sao cho FI = IB => \(\Delta\)FIB cân tại I 

mà ^BIF = ^BID = 60\(^{\text{​​}o}\)( theo (a))

=> \(\Delta\)FIB đều  (7)

=> ^DBA = ^FBI( =60\(^o\))

=> ^DBF + ^FBA = ^FBA + ^ABI 

=> ^DBF = ^ABI  

Lại có: BI = BF ( theo (7) ) và BA = BD ( \(\Delta\)BAD đều )

Từ (3) điều trên => \(\Delta\)DFB = \(\Delta\)AIB  => ^AIB = ^DFB = 180\(\text{​​}^o\)- ^BFI = 180\(\text{​​}^o\)-60\(\text{​​}^o\)=120\(\text{​​}^o\)

+) Mặt khác ^BID = 60 \(\text{​​}^o\)( theo (a) ) 

=> ^DIE = 180\(\text{​​}^o\)- ^BID = 120 \(\text{​​}^o\)và ^DIA = ^AIB - ^BID = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^AIE = ^DIE - ^DIA = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^DIA = ^AIE ( = 60\(\text{​​}^o\)

=> IA là phân giác ^DIE.

                       

19 tháng 3 2018

) f(0) = c; f(0) nguyên => c nguyên     (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên     (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên    (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị  nguyên  mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên

:3

25 tháng 3 2018

Có \(f\left(0\right);f\left(1\right);f\left(2\right)\)\(\in Z\Rightarrow\hept{\begin{cases}f\left(0\right)=c\in Z\\f\left(1\right)=a+b+c\in z\\f\left(2\right)=4a+2b+c\in z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b\in z\\4a+2b\in z\end{cases}\Rightarrow\hept{\begin{cases}2a+2b\in z\\4a+2b\in z\end{cases}}\Rightarrow2a\in z;}2b\in z\)

\(\RightarrowĐPCM\)

22 tháng 1 2017

A B C H E D

Có thể thấy rằng DC + DE = EC < BC mà BC < AB + AC (bất đẳng thức tam giác) nên AB + AC > DC + DE.

Đề sai rồi bạn.

22 tháng 1 2017

mả thằng cha mi t

7 tháng 3 2015

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\)(1)

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\)(2)

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{9c}\)(3)

Từ (1), (2), (3) => \(\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)hay \(\frac{a}{x+2y+z}=\frac{b}{2z+y-z}=\frac{c}{4x-4y+z}\)(vì cùng = 9)

 

 

19 tháng 3 2016

cảm ơn bn nhiều

24 tháng 2 2019

Một cách giải khác:

A B C D E H I F

Dựng tam giác đều EHF sao cho F nằm trên nửa mặt phẳng bờ BC có chứa A.

Khi đó:  ^CEH = ^AEF (=600 - ^AEH). Kết hợp với EC=EA, EH=EF suy ra \(\Delta\)HEC = \(\Delta\)FEA (c.g.c)

=> CH = AF (2 cạnh tương ứng) hay BH = AF (Do BH=CH)

Ta có: ^IAF = 3600 - ^EAF - ^EAC - ^BAC - IAB = 3600 - 600 - 300 - ^ECH - ^BAC (^EAF=^ECH vì \(\Delta\)HEC = \(\Delta\)FEA)

= 2700 - 600 - ^BAC - ^ACB = 300 + ^ABC = ^IBA + ^ABC = ^IBH

Xét \(\Delta\)BIH và \(\Delta\)AIF có: IB = IA, BH = AF (cmt), ^IBH = ^IAF (cmt) => \(\Delta\)BIH = \(\Delta\)AIF (c.g.c)

Suy ra IH = IF (2 cạnh tương ứng). Mà EH = EF nên IE trung trực của HF.

Xét \(\Delta\)EHF đều có EI là trung trực của HF => EI là phân giác của ^HEF => ^IEH = ^HEF/2 = 300

Kết luận: ^IEH = 300.

20 tháng 2 2019

A B C K E D 1 2 3 1 1 2 2 1 2 3 4 I H

Trên tia IH lấy điểm K sao cho HI=HK

Xét tam giác HIB và tam giác HKC có:

HI=HK (cách vẽ)

HB=HC ( H là trung điểm BC)

\(\widehat{H_1}=\widehat{H_2}\)( đối định )

=> \(\Delta HIB=\Delta HKC\)(c.g.c)

=> IB=CK mà IB=AI ( dễ tự chứng minh)

=> CK=AI (1)

\(\widehat{IAE}=\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=30^o+\widehat{A_2}+60^o=90^o+\widehat{A_2}\)

\(\widehat{ECK}=\widehat{C_1}=360^o-\left(\widehat{C_2}+\widehat{C_3}+\widehat{C_4}\right)\)Vì \(\Delta HIB=\Delta HKC\)=> \(\widehat{C_2}=\widehat{HBI}\)=\(\widehat{B_1}+\widehat{B_2}=30^o+\widehat{B_1}\)

và \(\widehat{C_4}=60^o\)

=> \(\widehat{ECK}=\widehat{C_1}=360^o-\left(90^o+\widehat{B_1}+\widehat{C_3}_{ }\right)=90^o+\widehat{A_2}\)

=> \(\widehat{IAE}=\widehat{ECK}\)(2)

và AE= EC ( tam giác AEC đều) (3)

Từ (1), (2), (3)

=> \(\Delta IAE=\Delta KCE\)

=> IE=KE => tam giác IEK cân  có EH là đường trung tuyến=> EH cũng là đường phân giác 

\(\widehat{AEI}=\widehat{CEK}\)=> \(\widehat{IEK}=\widehat{IEC}+\widehat{CEK}=\widehat{IEC}+\widehat{AEI}=\widehat{AEC}=60^o\)

=> \(\widehat{IEH}=60^o:2=30^o\)

17 tháng 12 2016

  Ta có: \(A=1-\left[\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-...-\left(\frac{3}{4}\right)^{2010}\right]\)

=> Để  \(A\in N\)thì \(\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-...-\left(\frac{3}{4}\right)^{2010}\in Z\)

=> \(3-3^2+3^3-...-3^{2010}\)phải chia hết cho 4.

Ta có: 3 - 3+ 33 - ... . 32010 = (3 - 32) + (33 - 34) + ... + (32009 - 32010) =

       = (3.1-3.3)+...+(32009.1+32010.3) -> có 2010 / 2 = 1005 nhóm tất cả.

          (3.1-3.3)+...+(32009.1+32010.3) = 3.(-2)+33.(-2)+...+32009.(-2) = (-2).(3+33+...+32009) không chia hết cho 4.

 Vậy \(A\notin Z\)

7 tháng 12 2017

  Ta có: A=1[34 (34 )2+(34 )3...(34 )2010]

=> Để  ANthì 34 (34 )2+(34 )3...(34 )2010Z

=> 332+33...32010phải chia hết cho 4.

Ta có: 3 - 3+ 33 - ... . 32010 = (3 - 32) + (33 - 34) + ... + (32009 - 32010) =

       = (3.1-3.3)+...+(32009.1+32010.3) -> có 2010 / 2 = 1005 nhóm tất cả.

          (3.1-3.3)+...+(32009.1+32010.3) = 3.(-2)+33.(-2)+...+32009.(-2) = (-2).(3+33+...+32009) không chia hết cho 4.

 Vậy AZ

1 tháng 11 2017

bạn vẽ hình ra đc k 

1 tháng 11 2017

Cách 1:

A B C M N 30 20 30 20 30 0 0 0 0 0 80 0

Cách 2:

A B C M E 40 0 60 0 80 0