K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

a)106:6+101:6

=(106+101):6

=207:6

=34,5

b)100:9-79,3:9

=(100-79,3):9

=20,7:9

=2,3

11 tháng 12 2016

Cảm ơn bạn

DD
24 tháng 8 2021

Gọi ba số đó là \(a,b,c\)(\(a,b,c\inℕ^∗\))

\(a+b+c=100\)

\(P=abc\).

Dễ thấy GTNN của \(P\)đạt tại hai số bằng \(1\), một số bằng \(98\).

\(minP=98\)khi \(\left(a,b,c\right)=\left(1,1,98\right)\)và các hoán vị. 

Giờ ta sẽ tìm GTLN của \(P\).

Giả sử \(a\ge b\ge c\).

Ta có nhận xét rằng \(P\)đặt giá trị lớn nhất khi hai trong ba số trên có hiệu không vượt quá \(1\).

Giả sử \(a-b>1\).

Khi đó thay \(a\)bởi \(a-1\)\(b\)bởi \(b+1\)ta có: 

\(c\left(a-1\right)\left(b+1\right)=c\left(ab+a-b-1\right)>cab\)

Do đó \(P\)đạt GTLN khi \(a\ge b\ge c\)\(a-c\le1\)

Kết hợp với \(a+b+c=100\)suy ra \(P\)đạt max tại \(a=34,b=c=33\).

Khi đó \(maxP=34.33^2\).

Dấu \(=\)khi \(\left(a,b,c\right)=\left(34,33,33\right)\)và các hoán vị. 

24 tháng 8 2021

(34,33,33) và các hoán vị

24 tháng 8 2021

gọi 3 số đó là a,b,c

a+b+c=100

theo bdt cosi: a+b+c>=\(3\sqrt[3]{abc}\)

\(\Leftrightarrow100\ge3\sqrt[3]{abc}\Leftrightarrow\frac{1000000}{27}\ge abc\)

vậy abc đạt gtln là 1000000/27 hay tích 3 số đó có GTLN là 1000000/27

24 tháng 8 2021
An U buffo x cm id so go
17 tháng 9 2014

thừa số thứ nhất có hai chữ số. Nếu viết thêm chữ số 1 vào bên trái thì thừa số thứ nhất tăng thêm 100 đơn vị . khi đó tích mới tăng lên 100 lần của thừa số thứ hai vậy thừa số thứ hai là 2300 :100= 23 

 

18 tháng 2 2017

23 bạn nha

CHÚC BẠN HỌC GIỎI

21 tháng 8 2021

Toán C64, bài 2a)undefined

21 tháng 8 2021

Toán C64, bài 2b)undefined

25 tháng 8 2020

Ta có : \(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+....+2014^{2015}}\)

\(=\frac{10101\cdot0}{2^3+3^4+4^5+....+2014^{2015}}=0\)

Vậy \(S=0\)

25 tháng 8 2020

\(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{10101\cdot0}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=0\)

THÔNG BÁO MỞ MỨC ĐỘ 10 MINIGAME "DÃY SỐ BÍ ẨN" - CÒN 1 NGÀY*Những bạn vượt qua vòng 7 chú ý thông báo nha*Mức độ 10 của hậu sự kiện đã chính thức mở! Thời hạn để hoàn thành thử thách này là 1 ngày (trước 23h59 ngày 20/8/2021). Link: Mức độ 10 - Hoc24 (hoặc https://hoc24.vn/cuoc-thi/hau-su-kien-1-day-so-bi-an.6684/muc-do-10.7521) Xin chúc mừng hai bạn đã giải thành công mức độ 9. Thứ hạng hiện tại như sau:- GIẢI NHẤT...
Đọc tiếp

THÔNG BÁO MỞ MỨC ĐỘ 10 MINIGAME "DÃY SỐ BÍ ẨN" - CÒN 1 NGÀY

*Những bạn vượt qua vòng 7 chú ý thông báo nha*

Mức độ 10 của hậu sự kiện đã chính thức mở! Thời hạn để hoàn thành thử thách này là 1 ngày (trước 23h59 ngày 20/8/2021). 

Link: Mức độ 10 - Hoc24 (hoặc https://hoc24.vn/cuoc-thi/hau-su-kien-1-day-so-bi-an.6684/muc-do-10.7521)

 

undefined

Xin chúc mừng hai bạn đã giải thành công mức độ 9. Thứ hạng hiện tại như sau:

- GIẢI NHẤT (200 điểm hậu sự kiện + 30GP): Rin Huỳnh

- Tranh hạng 2 và 3: Hồng Phúc, HT2k02.

- GIẢI TƯ (70 điểm hậu sự kiện + 10GP): 弃佛入魔

- Tranh hạng 5 đến 10: những bạn còn lại không vượt qua vòng 8 và 9.

Lưu ý: các bạn làm và nộp bài như thường nếu không gặp lỗi nộp. Nếu các bạn bị lỗi nộp, hãy inbox mình trực tiếp trên hoc24 để trả lời đáp án và giải thích quy luật dãy số.

-------------------------------------------

Đáp án Mức độ 9:

1) Với n bắt đầu từ 2, mỗi số trong dãy đều thuộc quy luật sau:

\(n!\times n-\left[\sqrt{n}\right]\).

Vậy nên số thứ 7 và số thứ 8 của dãy sẽ là: 322558 và 3265917. 

2) Quy luật của bạn Rin Huỳnh, đáp án là 322558 và 3265918.

12

Ôi tui thật sự ngu ngốc

21 tháng 8 2021

Vinh dự quá mọi người <3

DD
20 tháng 8 2021

\(4A=12x^2+12y^2+4z^2+20xy-12yz-12zx-8x-8y+12\)

\(=9x^2+9y^2+4z^2+18xy-12yz-12zx+2\left(x^2+y^2+4-4x-4y+2xy\right)+x^2+y^2-2xy+4\)

\(=\left(3x+3y-2z\right)^2+2\left(x+y-2\right)^2+\left(x-y\right)^2+4\ge4\)

Dấu \(=\)khi \(\hept{\begin{cases}3x+3y-2z=0\\x+y-2=0\\x-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=1\\z=3\end{cases}}\).

Vậy \(minA=1\)khi \(x=y=1,z=3\).

\(A=3x^2+3y^2+z^2+5xy-3yz-3xz-2x-2y+3\)

\(=\left(z-\frac{3}{2}x-\frac{3}{2}y\right)^2+\frac{3}{4}\left(x^2y^2+\frac{2}{3}xy-\frac{8}{3}x-\frac{8}{3}y\right)+3\)

\(=\left(z-\frac{3}{2}x-\frac{3}{2}y\right)^2+\frac{3}{4}[\left(x+\frac{y}{3}-\frac{4}{3}\right)^2+\frac{8}{9}y^2-\frac{16}{9}y-\frac{16}{9}]\)

\(=\left(z-\frac{3}{2}x-\frac{3}{2}y\right)^2+\frac{3}{y}[\left(x+\frac{y}{3}-\frac{4}{3}\right)^2+\frac{8}{9}\left(y-1\right)^2-\frac{2y}{9}]+3\)

\(=\left(z-\frac{3}{2}x-\frac{3}{2}y\right)^2+\frac{3}{y}[\left(x+\frac{y}{3}-\frac{4}{3}\right)^2+\frac{8}{9}\left(y-1\right)^2]+1\)

\(\Leftrightarrow A\ge1\Leftrightarrow MinA=1\)

Dấu '' = '' xảy ra khi:

\(\hept{\begin{cases}z-\frac{3}{2}x-\frac{3}{2}y=0\\y-1=0\\x+\frac{y}{3}-\frac{4}{3}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}z=0\\y=1\\x=1\end{cases}}\)

undefined

2
DD
20 tháng 8 2021

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{abc}=1\)

\(\Leftrightarrow ab+bc+ca+1=abc\)

Nếu \(a,b,c\)đều là số lẻ thì \(VT\)là số chẵn, \(VP\)là số lẻ (mâu thuẫn) 

Do đó có một trong ba số là số chẵn. 

Giả sử \(c=2\): xét \(a\ge b>2\)

\(ab+2a+2b+1=2ab\)

\(\Leftrightarrow ab-2a-2b-1=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-2\right)=5=1.5\)

\(\Rightarrow\hept{\begin{cases}a-2=5\\b-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=7\\b=3\end{cases}}\)

Vậy \(\left(a,b,c\right)=\left(7,3,2\right)\)và các hoán vị. 

24 tháng 8 2021

(7,3,2 các hoán đơn vị

DD
20 tháng 8 2021

\(p=\frac{n\left(n+1\right)}{2}-1=1+2+...+n-1=2+3+...+n\)

 \(p=2+3+...+n\)

\(p=n+n-1+...+2\)

\(2p=\left(n+2\right)+\left(n+2\right)+...+\left(n+2\right)=\left(n-1\right)\left(n+2\right)\)

\(p=\frac{\left(n-1\right)\left(n+2\right)}{2}\)

- Nếu \(n\)chẵn: \(p\)chia hết cho \(n-1\)và \(\frac{n+2}{2}\)

nên là số nguyên tố khi \(\orbr{\begin{cases}n-1=1\\\frac{n+2}{2}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=2\left(tm\right)\\n=0\left(l\right)\end{cases}}\)suy ra \(p=2\).

- Nếu \(p\)lẻ: \(p\)chia hết cho \(\frac{n-1}{2}\)và \(n+2\)

do đó là số nguyên tố khi \(\orbr{\begin{cases}\frac{n-1}{2}=1\\n+2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\left(tm\right)\\n=-1\left(l\right)\end{cases}}\)suy ra \(p=5\).

Vậy \(p=2\)hoặc \(p=5\).