K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

Giả sử các góc AOE, EOF, FOE bằng nhau.

Xét tam giác AOF, ta thấy OE vừa là đường trung tuyến, vừa là đường phân giác nên OE cũng là đường cao.

Suy ra OE \perp AB. (1)

Chứng minh tương tự, OF \perp AB. (2)

Từ (1) và (2) suy ra E \equiv F (vô lý).

Vậy các góc AOE, EOF, FOE không bằng nhau.

                  
18 tháng 1 2021

wwwwwwwwwwwwwwwwwww

17 tháng 1 2021

Gọi x là số ngày để đội A làm một mình hoàn thành công việc

      y là số ngày để đội B làm một mình hoàn thành công việc

với x, y > 0

Mỗi ngày đội A làm được 1/x công việc, đội B làm 1/y công việc

Lại có mỗi ngày phần việc đội A làm gấp rưỡi đội B

=> 1/x = 3/2 . 1/y (1)

Hai đội làm chung trong 24 ngày thì xong công việc nên mỗi ngày hai đội cùng làm thì được 1/24 công việc

=> 1/x + 1/y = 1/24 (2)

Từ (1) và (2) => Ta có hệ phương trình :

\(\hept{\begin{cases}\frac{1}{x}=\frac{3}{2}\cdot\frac{1}{y}\\\frac{1}{x}+\frac{1}{y}=\frac{1}{24}\end{cases}}\)

Thế (1) vào (2)

hpt <=> \(\hept{\begin{cases}\frac{1}{x}=\frac{3}{2}\cdot\frac{1}{y}\\\frac{3}{2}\cdot\frac{1}{y}+\frac{1}{y}=\frac{1}{24}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{1}{x}=\frac{3}{2}\cdot\frac{1}{y}\\\frac{3}{2y}+\frac{1}{y}=\frac{1}{24}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{1}{x}=\frac{3}{2}\cdot\frac{1}{y}\\\frac{3}{2y}+\frac{2}{2y}=\frac{1}{24}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{1}{x}=\frac{3}{2}\cdot\frac{1}{y}\\\frac{5}{2y}=\frac{1}{24}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{1}{x}=\frac{3}{2}\cdot\frac{1}{y}\\y=60\end{cases}}\)

<=> \(\hept{\begin{cases}x=40\\y=60\end{cases}}\)( tmđk )

Vậy đội A làm một mình hoàn thành công việc hết 40 ngày

       đội B làm một mình hoàn thành công việc hết 60 ngày 

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>Cuộc thi Toán Tiếng Anh VEMC | FacebookNếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: [Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫuNhững câu hỏi được chọn sẽ khả năng cao trở thành những bài đặc biệt được Cộng đồng lưu ý giải và thảo luận. Những bài toán chưa được...
Đọc tiếp

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Những câu hỏi được chọn sẽ khả năng cao trở thành những bài đặc biệt được Cộng đồng lưu ý giải và thảo luận. Những bài toán chưa được duyệt nhưng các bạn chưa có lời giải, các bạn hãy gửi trực tiếp câu hỏi lên Hoc24 nhé!

-------------------------------------------------------------------

[Toán.C13 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trúc Giang

Cho hình bình hành ABCD có M, N, P, Q là trung điểm của AB, BC, CD, AD. Biết diện tích ABC = 60 m2. Tính diện tích MNPQ (Giải bằng nhiều cách).

[Toán.C14 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trọng Chiến

Tìm tất cả các số nguyên dương N có 2 chữ số sao cho tổng tất cả các chữ số của số \(10^N-N\) chia hết cho 170.

1
1 tháng 11 2021

khó thế khi nào em lên lớp 10 em giải cho

17 tháng 1 2021

               Trong các danh hai mà em yêu thích Chí Tài là người mà e yêu thik  nhất

ông chết rồi tả

 cái đéo gì

17 tháng 1 2021

??? la sao

17 tháng 1 2021

Câu 4b:

Ta có \(a-\sqrt{a}=\sqrt{b}-b\Leftrightarrow a+b=\sqrt{a}+\sqrt{b}\). (1)

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\).

Kết hợp với (1) ta có:

\(a+b\le\sqrt{2\left(a+b\right)}\Leftrightarrow0\le a+b\le2\).

Ta có: \(P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\) (Do \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))

\(=\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\) (Theo (1))

\(\Rightarrow P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\).

Áp dụng bất đẳng thức AM - GM cho hai số thực dương và kết hợp với \(a+b\le2\) ta có:

\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}=\left[\dfrac{\left(a+b\right)^2}{2}+\dfrac{8}{\left(a+b\right)^2}\right]+\dfrac{2012}{\left(a+b\right)^2}\ge2\sqrt{\dfrac{\left(a+b\right)^2}{2}.\dfrac{8}{\left(a+b\right)^2}}+\dfrac{2012}{2^2}=4+503=507\)

\(\Rightarrow P\ge507\).

Đẳng thức xảy ra khi a = b = 1.

Vậy Min P = 507 khi a = b = 1.

 

17 tháng 1 2021

Giải nốt câu 4a:

ĐKXĐ: \(x\geq\frac{-1}{2}\).

Phương trình đã cho tương đương:

\(x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1-\sqrt{2x+1}-1\right)\left(x+1+\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+1}=0\left(1\right)\\x+\sqrt{2x+1}+2=0\left(2\right)\end{matrix}\right.\).

Ta thấy \(x+\sqrt{2x+1}+2>0\forall x\ge-\dfrac{1}{2}\).

Do đó phương trình (2) vô nghiệm.

Xét phương trình (1) \(\Leftrightarrow x=\sqrt{2x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\sqrt{2}+1>0>-\dfrac{1}{2}\left(TM\right)\\x=-\sqrt{2}+1< 0\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\).

Vậy nghiệm của phương trình là \(x=\sqrt{2}+1\).