K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử n2+9n+24 chia hết cho 25

=> (n+3)2+15 chia hết cho 5

=> n+3 chia hết cho 5

=> (n+3)2 chia hết cho 25

=> (n+3)2+15 không chia hết cho 25 ( Vô lý)

=> giả sử sai 

=> đccm

7 tháng 3 2022

Giả sử \(n^2+9n+24⋮25\)\(\Rightarrow n^2+9n+24⋮5\)(1)

Ta có \(n^2+9n+24\)\(=n^2+2n+7n+14+10\)\(=n\left(n+2\right)+7\left(n+2\right)+10\)\(=\left(n+2\right)\left(n+7\right)+10\)(2)

Từ (1) và (2)\(\Rightarrow\left(n+2\right)\left(n+7\right)+10⋮5\)

Mà \(10⋮5\)nên \(\left(n+2\right)\left(n+7\right)⋮5\), mà 5 là số nguyên tố nên 1 trong 2 số \(n+2;n+7\)chia hết cho 5

Khi \(n+2⋮5\)thì \(n+2+5⋮5\)hay \(n+7⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)

Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)

Khi \(n+7⋮5\)thì \(n+7-5⋮5\)hay \(n+2⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)

Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)

Vậy điều giả sử sai \(\Rightarrow n^2+9n+24⋮̸25\)

3 tháng 3 2022

khoong bieet

4 tháng 3 2022

ko hiểu

2 tháng 3 2022

chúc mừng các bợn đạt đc giải nhé :33

3 tháng 6 2015

Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999

+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự

trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau

=>Mỗi  Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần

+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần

riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)

Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần

+) từ 2000 đến 2013 có:

S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)

= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83

Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083

3 tháng 6 2015

Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999

+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự

trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau

=>Mỗi  Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần

+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần

riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)

Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần

+) từ 2000 đến 2013 có:

S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)

= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83

Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083 **** ☺

NM
20 tháng 2 2022

ta có \(\frac{a}{1+b-a}+a\left(1+b-a\right)\ge2a\)hay \(\frac{a}{1+b-a}\ge a\left(1+a-b\right)=a\left(2a+c\right)\)

tương tự ta sẽ có :

\(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge2a^2+2b^2+2c^2+ab+ac+bc\)

\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\ge\frac{1}{2}\left(a+b+c\right)^2+\frac{1}{2}\left(a+b+c\right)^2\)

\(\ge\left(a+b+c\right)^2=1\)

vậy ta  có điều phải chứng minh

dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

NM
23 tháng 2 2022

vì bạn muốn làm bằng BDT Bunhia nên mình làm cách đó nhé : 

ta có : \(\left[a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)\right]\left(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\right)\)

\(\ge\left(a+b+c\right)^2=1\) ( áp dụng Bunhia ) 

nên ta có : \(VT\ge\frac{1}{a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)}=\frac{1}{a\left(2b+c\right)+b\left(2c+a\right)+c\left(2a+c\right)}\)

\(\ge\frac{1}{3\left(ab+bc+ca\right)}\) mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

nên ta có : \(VT\ge\frac{1}{3\times\frac{1}{3}}=1=VP\) vậy ta có đpcm

19 tháng 2 2022

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

sai r bạn ơi ko biết còn đòi

24 tháng 3 2017

Bài 1:

\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+1986}\right)\)

Nhận xét: \(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Do đó: \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+1986}\right)\)

\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{1985\cdot1988}{1986\cdot1987}=\frac{1\cdot4\cdot1988}{1986\cdot3}=\frac{3976}{2979}\)

Bài 2:

\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)

\(\Rightarrow\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=2^x\)\(\Rightarrow\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^x\)

\(\Rightarrow\frac{\left(2^2\right)^6}{3^6}\cdot\frac{\left(2\cdot3\right)^6}{2^6}=2^x\)\(\Rightarrow\frac{2^{12}}{3^6}\cdot\frac{2^6\cdot3^6}{2^6}=2^x\)

\(\Rightarrow\frac{2^6\cdot3^6\cdot2^{12}}{2^6\cdot3^6}=2^x\)\(\Rightarrow2^{12}=2^x\Rightarrow x=12\)

25 tháng 3 2017

đúng rồi đó bạn ks bạn ý đi chứ

12 tháng 2 2017

\(\frac{3}{5}=\frac{24}{40};\frac{3}{8}=\frac{15}{40};\frac{3}{10}=\frac{12}{40};\frac{3}{2}=\frac{60}{40}\)

12 tháng 2 2017

\(\frac{3}{5}=\frac{3\times8}{5\times8}=\frac{24}{40}\)

\(\frac{3}{8}=\frac{3\times5}{8\times5}=\frac{15}{40}\)

\(\frac{3}{10}=\frac{3\times4}{10\times4}=\frac{12}{40}\)

\(\frac{3}{2}=\frac{3\times20}{2\times20}=\frac{60}{40}\)

17 tháng 2 2022

Em sẽ cố gắng giảm thiểu tối đa để điều đó hạn chế xảy ra

Bảo vệ cho chính bản thân mình, đặc biệt trước hết phải là người thân, gia đình của mình, sau đó đến các bạn trên trường, lớp khi đến trường từ đó giảm thiểu trở thành F0 khiến lây lan trở nên lan rộng hơn

Hậu covid 19 rất đáng sợ vì vậy nên tuân theo biện pháp 5K và các cách phòng dịch là rất quan trong

Hạn chế ra khỏi nhà hay về quê khi Tết về, bởi lúc đó số lượng người kéo về quê sẽ tăng cao. Một số tỉnh quê có thể có những ca f0 cộng đồng mà ta không hề biết

Nếu một trong số người thân gia đình, hay ai đó trong chúng ta đã trở thành F0 thì hãy cố gắng cách ly mình và người đó tại nhà, trong một căn phòng, phạm vi nhất định để giảm thiểu khả năng lây lan sang các thành viên khác trong nhà và mọi người ở bên ngoài

Tích cực điều trị và theo dõi người bị f0, giảm thiệu những biến chứng nặng của covid để không cần phải đến bệnh viện chữa trị đặc biệt trong khoa hồi sức hay cấp cứ

Thường xuyên theo dõi, đo thân nhiệt và kiểm tra, test covid bằng test kid nhanh hoặc PCR ạ

17 tháng 2 2022

Hiện tại thì em đã đang F0, cách ly được đến hôm nay là 5  ngày rồi ạ . Cảm giác nó như người cúm nặng thôi ạ . Nhưng cái khó là tìm nguồn lây nhiễm . Khi em bị nhiễm ko rõ nguồn lây ro đâu , cũng ảnh hưởng rất lớn đến gia đình là cả nhà đều phải cách ly . Lúc trước khi bị em còn chưa biết rõ sự nguy hiểm của nó như nào nên là rất thoải mái vui chơi nhưng khi bị em đã bt sự nguy hiểm . Mong mọi người cẩn thận ạ . Trong tình huống này em hay xúc miệng vì nó khiến em rất đau họng như đóng băng cổ họng luôn ạ . Thường xuyên vệ sinh lại phòng . Test thường xuyên , hôm nào gần được đi học phải test PCR .

18 tháng 5 2016

mình trả lời chi bạn nè ! cả 3 bạn đều đạt giải đặc biệt

18 tháng 5 2016

Ba bạn đó đều nêu ra các trường hợp về các giải nhất nhì ba nhưng đều không đúng 

Như thế là phải có giải đặc biệt rồi mà 3 bạn chọn trong 4 giải thì sẽ có 36 cách chọn

Nên khả năng chọn đúng là rất thấp

Do đó tốt muốn biết chính xác thì phải hỏi cô Phương nhé