K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2021

5.

Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\Rightarrow0\le c\le1\Rightarrow1-\dfrac{c}{2}>0\)

\(P=bc+ca+ab\left(1-\dfrac{c}{2}\right)\ge0\)

\(P_{min}=0\) khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

\(P=c\left(a+b\right)+ab\left(1-\dfrac{c}{2}\right)\le c\left(3-c\right)+\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le3c-c^2+\dfrac{\left(3-c\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le\dfrac{5}{2}-\dfrac{c^3}{8}+\dfrac{3c}{8}-\dfrac{1}{4}=\dfrac{5}{2}-\dfrac{1}{8}\left(c-1\right)^2\left(c+2\right)\le\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(a=b=c=1\)

1 tháng 4 2021

Cách 2 phần tìm max bài 5:

Áp dụng BĐT: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow abc\ge-8abc+12\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow3abc+27\ge12\left(ab+bc+ca\right)-6abc\)

\(\Leftrightarrow ab+bc+ca-\dfrac{1}{2}abc\le\dfrac{abc}{4}+\dfrac{9}{4}\le\dfrac{1}{4}.\left(\dfrac{a+b+c}{3}\right)^3+\dfrac{9}{4}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Câu 1:Cho các biểu thức \(A=\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\) và \(B=\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\) với \(x\ge0,x\ne1.\)a) Tính giá trị của B khi x = 49;b) Rút gọn M = A.B;c) Tìm \(x\) để \(M=\dfrac{1}{3}.\)Câu 2:1. Có 5 viên bi thủy tinh hình cầu, đường kính mỗi viên là 2cm. Một cốc thủy tinh hình trụ có đường kính đáy là 6cm, đang đựng nước (6cm là đường kính cột nước).       a) Tính thể tích mỗi viên bi;       b) Thả 5...
Đọc tiếp

undefined

Câu 1:

Cho các biểu thức \(A=\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\) và \(B=\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\) với \(x\ge0,x\ne1.\)

a) Tính giá trị của B khi x = 49;

b) Rút gọn M = A.B;

c) Tìm \(x\) để \(M=\dfrac{1}{3}.\)

Câu 2:

1. Có 5 viên bi thủy tinh hình cầu, đường kính mỗi viên là 2cm. Một cốc thủy tinh hình trụ có đường kính đáy là 6cm, đang đựng nước (6cm là đường kính cột nước).

       a) Tính thể tích mỗi viên bi;

       b) Thả 5 viên bi vào cốc nước; biết rằng cả 5 viên bi bị ngập trong nước vầ nước không tràn ra ngoài, tính chiều cao cột nước dâng lên.

2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai lớp 9A và 9B tham gia đợt trồng cây vì môi trường xanh, sạch đẹp. Cả hai lớp có 81 bạn tham gia. Mỗi bạn lớp 9A trồng được 5 cây, mỗi bạn lớp 9B trồng được 4 cây. Cả hai lớp trồng được 364 cây. Tính số học sinh của mỗi lớp.

Câu 3:

1. Cho ba đường thẳng: (d1): y = x + 3; (d2): y = -x + 1 và (d3): y = \(\sqrt{2}\) x + \(\sqrt{2}\) + m. Tìm m để ba đường thẳng đồng quy.

2. Cho phương trình x2 + mx - 2m - 4 = 0 (1)

a) Giải phương trình (1) khi m = 1.

b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1; x2 sao cho x2 = 2x1.

Câu 4: Cho đường tròn (O; R), đường kính AB. Điểm H thuộc đoạn OA. Kẻ dây CD vuông góc với AB tại H. Vẽ đường tròn O1 đường kính AH và đường tròn O2 đường kính BH. Nối AC cắt đường tròn (O1) tại M, nối BC cắt đường tròn O2 tại N. Đường thẳng MN cắt đường tròn (O; R) tại E và F.

a) Chứng minh CMHN là hình chữ nhật;

b) Cho AH = 4cm, HB = 9cm, tính MN;

c) Chứng minh CE = CF = CH. 

Chúc các em ôn thi tốt!

2

Câu 1:

a) Thay x=49 vào B, ta được:

\(B=\dfrac{49-\sqrt{49}}{2\cdot\sqrt{49}+1}=\dfrac{49-7}{2\cdot7+1}=\dfrac{42}{15}=\dfrac{14}{5}\)

2 tháng 4 2021

Câu 2:

2)

Gọi số học sinh lớp 9A là: x   (h/s)

ĐK: \(x\in N^{ }\)\(0< x< 81\)

Khi đó, số học sinh lớp 9B là: \(81-x\)

Ta có:

Số cây mà lớp 9A trồng được là: 5x  (cây)

Số cây mà lướp 9B trồng được là: 4.(81-x)

Theo đề ra, ta có phương trình:

\(5x+4\left(81-x\right)=364\)

⇔ \(5x+324-4x=364\)

⇔ \(x=40\)

⇒ Số học sinh lớp 9A là: 40 (h/s)

⇒ Số học sinh lướp 9B là: \(81-40=41\) (h/s)

Vậy lớp 9A có 40 học sinh

       lớp 9B có 41 học sinh

 

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

a, xét từ giác AMNC có 
CAM^=90∘ (Ac là tiếp tuyến của (O) , 

CNM^=90∘ (MN vuông góc với CD) => \(\widehat{CAM}+\widehat{CNM}\)=180

=> AMNC nội tiếp

Xét tứ giác BMND có MBD^=90 ( BD là tiếp tuyến của (O) , \(\widehat{CND}\)=90 ( MN vuông góc với CD)

=> \(\widehat{MND}+\widehat{NAC}\)NAC^=180

=> Tứ giác BDMN nội tiếp

b, Ta có \(\widehat{CMN}=\widehat{NAC}\)NAC^ (cùng chắn CN)

=> CMN^=12 cung AN(1)

Ta cũng có\(\widehat{NMD}+\widehat{NMD}\)NBD^ (cùng chắn cung ND)

\(\widehat{NMD}\)=12 cung NB(2)

Từ (1) và (2) => \(\widehat{CMD}+\widehat{NMD}\)NMD^12 (cung AN + cung NB) 

=> \(\widehat{CMD}\)12 cung AB = 1802=90

=> tam giác CMD vuông tại M

Vì NMBD nội tiếp => \(\widehat{NDM}+\widehat{NBM}\)NBM^ ( góc nội tiếp cùng chắn cung AM) 

Mà \(\widehat{MCD}+\widehat{NBM}\)=90

=> \(\widehat{MCD}+\widehat{NBM}\)NBM^=90 (1)

Mặt khác \(\widehat{NAB}+\widehat{NBA}\)NBA^=90 (2)

Từ (1) và (2) => \(\widehat{MCD}=\widehat{NAB}\)

Xét tam giác ANB và CMD ta cs

\(\widehat{ANB}=\widehat{CMD}\) (=90)

\(\widehat{MCD}=\widehat{NAD}\)

=> 2 tam giác này bằng nhau

Câu 1:    Cho các biểu thức \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) và \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9};\) với \(x\ge0;x\ne9.\)a) Tính giá trị của A khi x = 36;b) Rút gọn biểu thức M = A + B;c) Tìm x sao cho M = M4.Câu 2:a) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:   Trên quãng đường AB dài 200km có hai ô tô đi ngược chiều. Xe 1 khởi hành từ A đi đến B, xe 2 khởi hành từ B đi đến A. Hai xe khởi...
Đọc tiếp

undefined

Câu 1:

    Cho các biểu thức \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) và \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9};\) với \(x\ge0;x\ne9.\)

a) Tính giá trị của A khi x = 36;

b) Rút gọn biểu thức M = A + B;

c) Tìm x sao cho M = M4.

Câu 2:

a) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

   Trên quãng đường AB dài 200km có hai ô tô đi ngược chiều. Xe 1 khởi hành từ A đi đến B, xe 2 khởi hành từ B đi đến A. Hai xe khởi hành cùng một lúc và sau hai giờ thì gặp nhau. Tính vận tốc mỗi xe nếu vận tốc xe 2 lớn hơn vận tốc xe 1 là 10km/h.

b) Một hộp sữa hình trụ có thể tích là 16π (cm3).  Biết rằng đường kính đáy và độ dài trục của hình trụ bằng nhau.

Tính diện tích vật liệu cần dùng để tạo nên một hộp sữa như vậy (bỏ qua diện tích phần ghép nối).

Câu 3: 

1) Cho đường thẳng (d): y = mx - m + 1 và parabol (P): y = x2;

    a) Tìm m để đường thẳng (d) vad parabol (P) cắt nhau tại hai điểm phân biệt;

    b) Gọi \(x_1, x_2\) là hoành độ các giao điểm của (d) và (P). Tìm m sao cho \(x_1^2x_2+x_2^2x_1=2.\)

2) Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{3}{x}+y=5\\\dfrac{2}{x}-2y=-2.\end{matrix}\right.\)

Câu 4:

    Cho nửa đường tròn (O; R) đường kính AB. Trên cùng nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ hai tiếp tuyến Ax, By với nửa đường tròn. Lấy điểm M thuộc nửa đường tròn, tiếp tuyến tại M của nửa đường tròn cắt Ax, By lần lượt tại C và D. Nối AD cắt BC tại N, MN cắt AB tại H.

a) Chứng minh OACM là tứ giác nội tiếp;

b) Chứng minh tích AC.BD không phụ thuộc vào vị trí của M;

c) Chứng minh MN // BD và MN = NH.

Câu 5:

    Cho a, b, c > 0; a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức: 

                                     \(M=\dfrac{ab}{c^2\left(a+b\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{bc}{a^2\left(b+c\right)}.\)

Chúc các em ôn thi tốt và đạt điểm cao trong kì thi sắp tới!

7
30 tháng 3 2021

Ngoc Anh Thai e nhầm tưởng 1 giờ

30 tháng 3 2021

Bài 2

a)

Gọi vận tốc xe 1 là: x (x>0) (km/h)

=> Vận tốc xe 2 là x + 10 (km/h)

Do hai xe khởi hành cùng một lúc và sau hai giờ thì gặp nhau nên ta có phương trình:

x.2+(x+10).2 = 200

⇔ 2x + 2x + 20 = 200

⇔4x = 180

⇔x=45 (tmx>0)

Vậy vận tốc xe 1 là 45km/h, xe 2 là 45+10 = 55 km/h

30 tháng 3 2021

Add: Tr Ph Thảo (hpthaoo)

23 tháng 8 2020

Áp dụng bất đẳng thức Bunhiacopxki ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)\(=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

Theo một bất đẳng thức quen thuộc ta có \(abc\left(a+b+c\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\)

Từ đó ta được \(abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}{3}\)\(\le\frac{\left(a^2+b^2+c^2+ab+bc+ca+ab+bc+ca\right)^3}{3^4}=\frac{\left(a+b+c\right)^6}{3^4}\)

Do đó ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le\frac{\left(a+b+c\right)^6}{3^4}\)hay \(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\le\frac{\left(a+b+c\right)^3}{3^2}\)(*)

Dễ dàng chứng minh được \(a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)(**)

Từ (*) và (**) suy ra \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\sqrt[3]{2}\)

27 tháng 10 2019

Xét hiệu : \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0,\forall a,b>0\)

\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)

Áp dụng BĐT AM-GM :
\(a^3+b^3+2c^3\ge ab\left(a+b\right)+2c^3\ge2\sqrt{ab\left(a+b\right).2c^3}=2\sqrt{4c^2\left(a+b\right)}\)

\(=4c\sqrt{a+b}\)

Hoàn toàn tương tự

\(a^3+2b^3+c^3\ge4b\sqrt{a+c};2a^3+b^3+c^3\ge4a\sqrt{b+c}\)

Cộng thao vế bất đẳng thức vừa thu được

\(\Rightarrow a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\sqrt[3]{2}\)

Chúc bạn học tốt !!!