K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

Em cảm ơn ạ

15 tháng 7 2021

Em cảm ơn ạ

12 tháng 7 2021

tí tiếng anh bắt giải thích nữa chắc xỉu

ngắn thui hoặc em giải thích trên pp làm loại trừ kiểu vậy

16 tháng 6 2021

Câu b, cot 5x= cot x á

con gái chữ đẹp *cười*

6 tháng 10 2020

\(2tan^2x-2\sqrt{3}tanx-3=0\)      

\(\orbr{\begin{cases}tanx=\frac{3+\sqrt{3}}{2}\\tanx=\frac{-3+\sqrt{3}}{2}\end{cases}}\)   

\(\orbr{\begin{cases}tanx=tana\\tanx=tanb\end{cases}}\)   Đặt \(tana=\frac{3+\sqrt{3}}{2};tanb=\frac{-3+\sqrt{3}}{2}\)   

\(\orbr{\begin{cases}x=a+k\pi\\x=b+k\pi\end{cases};k\in Z}\)    

\(\sqrt{3}cot^2x-\left(1+\sqrt{3}\right)cotx+1=0\)   

\(\orbr{\begin{cases}cotx=1\\cotx=\frac{\sqrt{3}}{3}\end{cases}}\)   

\(\Rightarrow\orbr{\begin{cases}tanx=1=tan\frac{\pi}{4}\\tanx=\sqrt{3}=tan\frac{\pi}{3}\end{cases}}\)   

\(\orbr{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\end{cases};k\in Z}\)

   

25 tháng 5 2021

bang lon

30 tháng 5 2021

Câu 2:

a) Điều kiện: \(x\ne-1\)

BPT tương đương:

\(\frac{\left(x+1\right)^2\left(\sqrt{x^2+2x+2}+1\right)}{x^2+2x+1}\ge4+2x\)

\(\Leftrightarrow\sqrt{x^2+2x+2}\ge3+2x\)

\(\Leftrightarrow3+2x< 0\left(h\right)\hept{\begin{cases}3+2x\ge0\\x^2+2x+2\ge9+12x+4x^2\end{cases}}\)

\(\Leftrightarrow x< -\frac{3}{2}\left(h\right)\hept{\begin{cases}x\ge-\frac{3}{2}\\-\frac{7}{3}\le x\le-1\end{cases}}\Leftrightarrow x\le-1\)

Kết hợp ĐK suy ra \(S_a=\left(-\infty;-1\right)\)

b) Hệ tương đương:

\(\hept{\begin{cases}\left(x^2+1\right)=y\left(x+y+2\right)\left(1\right)\\\left(x^2+1\right)\left(x+y-2\right)=5y\left(2\right)\end{cases}}\)

Ta thấy VP(1) = VT (1) = x2 + 1 khác 0, vậy thì chia VT(2) và VP(2) cho VT(1) và VP (1), ta được:

\(x+y-2=\frac{5}{x+y+2}\Leftrightarrow\left(x+y\right)^2=9\Leftrightarrow\orbr{\begin{cases}x+y=3\\x+y=-3\end{cases}}\)

+) Nếu \(y=3-x\) thì (1) trở thành:

\(x^2+5x-14=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x;y\right)=\left(2;1\right)\\\left(x;y\right)=\left(-7;10\right)\end{cases}}\)

+) Nếu \(y=-3-x\) thì (1) trở thành:

\(x^2-x-2=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x;y\right)=\left(-1;-2\right)\\\left(x;y\right)=\left(2;-5\right)\end{cases}}\)

Vậy \(S_b=\left\{\left(2;1\right);\left(-7;10\right);\left(-1;-2\right);\left(2;-5\right)\right\}.\)

16 tháng 5 2021

TH 4 bạn nữ hoặc 5 bạn nữ đứng liền nhau: 

Coi nhóm 4 bạn nữ là X, số cách sắp xếp nhóm X là: \(4!\)(cách)

Sắp xếp X, 1 bạn nữ còn lại và 4 bạn nam có:  \(6!\)(cách)

Xếp ngẫu nhiên 9 bạn có: \(9!\)(cách)

Vậy xác suất để không quá 3 bạn nữ đứng liền nhau là: \(\frac{9!-4!.6!}{9!}=\frac{20}{21}\)

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Theo nhị thức Newton:

$C^k_{2016}$ chính là hệ số của $x^k$ trong khai triển $(x+1)^{2016}(*)$

Lại có:

$(x+1)^{2016}=(x+1)^5.(x+1)^{2011}$

\(=(\sum \limits_{i=0}^5C^i_5x^i)(\sum \limits_{j=0}^{2011}C^i_{2011}x^j)\)

Hệ số $x^k$ trong khai triển này tương ứng với $0\leq i\leq 5; 0\leq j\leq 2011$ thỏa mãn $i+j=k$

Hay hệ số của $x^k$ trong khai triển $(x+1)^{2016}$ là:

$C^0_5.C^k_{2011}+C^1_5.C^{k-1}_{2011}+C^2_5C^{k-2}_{2011}+C^3_5.C^{k-3}_{2011}+C^4_5.C^{k-4}_{2011}+C^5_5.C^{k-5}_{2011}(**)$

Từ $(*); (**)$ ta có đpcm.

NV
8 tháng 3 2021

a.

\(\Leftrightarrow na_{n+2}-na_{n+1}=2\left(n+1\right)a_{n+1}-2\left(n+1\right)a_n\)

\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=2.\dfrac{a_{n+1}-a_n}{n}\)

Đặt \(b_n=\dfrac{a_{n+1}-a_n}{n}\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=1\\b_{n+1}=2b_n\end{matrix}\right.\) \(\Rightarrow b_n=2^{n-1}\Rightarrow a_{n+1}-a_n=n.2^{n-1}\)

\(\Leftrightarrow a_{n+1}-\left[\dfrac{1}{2}\left(n+1\right)-1\right]2^{n+1}=a_n-\left[\dfrac{1}{2}n-1\right]2^n\)

Đặt \(c_n=a_n-\left[\dfrac{1}{2}n-1\right]2^n\Rightarrow\left\{{}\begin{matrix}c_1=a_1-\left[\dfrac{1}{2}-1\right]2^1=2\\c_{n+1}=c_n=...=c_1=2\end{matrix}\right.\)

\(\Rightarrow a_n=\left[\dfrac{1}{2}n-1\right]2^n+2=\left(n-2\right)2^{n-1}+2\)

NV
8 tháng 3 2021

b.

Câu b này đề sai

Với \(n=1\Rightarrow\sqrt{a_1-1}=0< \dfrac{1\left(1+1\right)}{2}\)

Với \(n=2\Rightarrow\sqrt{a_1-1}+\sqrt{a_2-1}=0+1< \dfrac{2\left(2+1\right)}{2}\)

Có lẽ đề đúng phải là: \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\dfrac{n\left(n-1\right)}{2}\)

Ta sẽ chứng minh: \(\sqrt{a_n-1}\ge n-1\) ; \(\forall n\in Z^+\)

Hay: \(\sqrt{\left(n-2\right)2^{n-1}+1}\ge n-1\)

\(\Leftrightarrow\left(n-2\right)2^{n-1}+2n\ge n^2\)

- Với \(n=1\Rightarrow-1+2\ge1^2\) (đúng)

- Với \(n=2\Rightarrow0+4\ge2^2\) (đúng)

- Giả sử BĐT đúng với \(n=k\ge2\) hay \(\left(k-2\right)2^{k-1}+2k\ge k^2\)

Ta cần chứng minh: \(\left(k-1\right)2^k+2\left(k+1\right)\ge\left(k+1\right)^2\)

\(\Leftrightarrow\left(k-1\right)2^k+1\ge k^2\)

Thật vậy: \(\left(k-1\right)2^k+1=2\left(k-2\right)2^{k-1}+2^k+1\ge2k^2-4k+2^k+1\)

\(\ge2k^2-4k+5=k^2+\left(k-2\right)^2+1>k^2\) (đpcm)

Do đó:

\(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}>0+1+...+n-1=\dfrac{n\left(n-1\right)}{2}\)

25 tháng 2 2021

Gọi tọa độ điểm MN lần lượt là M(x1;y1), N(x2;y2).

Hệ số góc tiếp tuyến của (C) tại M và N lần lượt là

k1=y′(x1)=−3x12+6x1−1k2=y′(x2)=−3x22+6x2−1

Để tiếp tuyến của (C) tại M và N luôn song song với nhau điều kiện là

{k1=k2x1≠x2 ⇔{(x1−x2)[−3(x1+x2)+6]=0x1≠x2⇔x1+x2=2.

Ta có:y1+y2=−(x1+x2)[(x1+x2)2−3x1x2]+3[(x1+x2)2−2x1x2]−(x1+x2)+8

Do x1+x2=2 nên y1+y2=−2(4−3x1x2)+3(4−2x1x2)+8=10.

Trung điểm của đoạn MN là I(1;5). Vậy đường thẳng MN luôn đi qua điểm cố định I(1;5).

25 tháng 2 2021

Ta có \(y'=-3x^2+6x-1\Rightarrow y^n=-6x+6;y^n=0\Leftrightarrow x=1\Rightarrow I\left(1;5\right)\) là điểm uốn của đồ thị (C)

G/s M (xM;yM); N(xN;yN) là 2 điểm di động trên (C)

Tiếp tuyển của (C) tại M,N song song với nhau

=> y'(xM)=y'(xN)

\(\Leftrightarrow-3x^2_M+6x_M-1=-3x_N^2+6x_N-1\)

\(\Leftrightarrow-3\left(x_M-x_N\right)\left(x_N+x_M\right)+6\left(x_M-x_N\right)=0\)

\(\Leftrightarrow\frac{x_M+x_N}{2}=1\left(x_M\ne x_N\right)\)=> I là trung điểm MN

Vậy đường thẳng MN luôn đi qua điểm I cố định

26 tháng 2 2021

Cho hàm số y=f(x)y=f(x)có đạo hàm liên tục trên khoảng K và có đồ thị là đường cong (C), phương trình tiếp tuyến của (C) tại điểm M(a,f(a)),(a∈K)M(a,f(a)),(a∈K) là:

y=f′(a)(x−a)+f(a).

 

8 tháng 4 2021

y=-x-3

25 tháng 2 2021

ko biết

25 tháng 2 2021
Giải cho em một bài tập Ngữ Văn trang 56 với ah