Cho hình vuông ABCD và một điểm E bất kì nằm giữa A và B. Trên tia đối của CB lấy F sao cho CF=AE.
a, Tính góc EDF
b, Gọi G là điểm đối xứng của D qua trung điểm I của È. CMR DEGF là hình vuông
c, CMR AC, DG, EF đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)
\(\Rightarrow P=\frac{1}{x^2-x+1}+1-\frac{x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\Rightarrow P=\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\Rightarrow P=\frac{1\left(x+1\right)+1\left(x+1\right)\left(x^2-x+1\right)-x^2-2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\Rightarrow P=\frac{x+1+1\left(x^3+1\right)-x^2-2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\Rightarrow P=\frac{x+1+x^3+1-x^2-2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\Rightarrow P=\frac{x+x^3-x^2}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(1+x^2-x\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\Rightarrow P=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x}{x+1}\)
mk mới học nên ko giúp đc gì, mong bạn thông cảm, chúc bạn học thật giỏi
Bạn tự kí hiệu vào hính nhé
a) Ta có : MIO = BOC = 900
Mà 2 góc này ở vị trí đồng vị => MN // BD => MNDB là hình thang (1)
Ta có ABCD là hình vuông
=> ADB = BCD = ABD = DBC ( tính chất hình vuông bạn tự c/m )
hay ADB = ABD (2)
Từ (1)(2) => MNDB là hình thang cân ( đpcm )
b) Xét tứ giác AEIF có EAF = AFI = AEI = 900
=> tứ giác AEIF là hình chữ nhật (3)
Mặt khác ta có AC là đường p/g của góc BAD nên cũng đồng thời là đường p/g của góc EAF (4)
Từ (3)(4) => tứ giác AEIF là hình vuông ( đpcm )