Cho \(\left\{\begin{matrix}x\ge0;y\ge0;z\ge0\\x+y+z=1\end{matrix}\right.\)
Chứng minh rằng : \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
GIÚP MÌNH NHÉ, MẶC DÙ TẾT NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1)
Gọi PT đường thẳng $MK$ là \((\Delta):y=ax+b\)
Vì \((\Delta)\perp (d)\Rightarrow a(-2)=-1\Rightarrow a=\frac{1}{2}\)
Mặt khác \(M(3,3)\in (\Delta)\Rightarrow 3=\frac{3}{2}+b\Rightarrow b=\frac{3}{2}\Rightarrow (\Delta):y=\frac{x}{2}+\frac{3}{2}\)
Gọi tọa độ của $K=(m,n)$. Vì \(K\in (\Delta),(d)\) nên \(\left\{\begin{matrix} n=\frac{m}{2}+\frac{3}{2}\\ n=-2m+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=1\\ n=2\end{matrix}\right.\Rightarrow K(1,2)\)
Từ đkđb có $K$ là trung điểm của $MP$. Do đó:
\(\left\{\begin{matrix} m=1=\frac{3+x_P}{2}\\ n=2=\frac{3+y_P}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_P=-1\\ y_P=1\end{matrix}\right.\Rightarrow P(-1,1)\)
Câu 2:
a) Ta có \(\left\{\begin{matrix} (d):y=\frac{x}{2}-2\\ (d'):y=\frac{-3x}{2}+4\end{matrix}\right.\Rightarrow \) phương trình hoành độ giao điểm là:
\(\frac{x}{2}-2=\frac{-3x}{2}+4(1)\Leftrightarrow x=3\Rightarrow y=\frac{-1}{2}\)
Rõ ràng PT $(1)$ có nghiệm nên hai đường thẳng cắt nhau tại \(M(3,\frac{-1}{2})\)
b) Gọi PT đường thẳng cần tìm là $y=ax+b$
Vì đường thẳng đó vuông góc với $(d)$ nên \(\frac{a}{2}=-1\Rightarrow a=-2\)
Do $M$ thuộc đường thẳng đó nên \(-\frac{1}{2}=3(-2)+b\Rightarrow b=\frac{11}{2}\)
\(\Rightarrow \text{PTĐT}:y=-2x+\frac{11}{2}\)
a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)
Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)
Để PT (1) thì PT(2) vô nghiệm:
Để PT(2) vô nghiệm thì: \(\Delta=\left(1-2m\right)^2-4.\left(m^2-1\right)<0\Leftrightarrow1-4m+4m^2-4m^2+4<0\)
<=>5-4m<0
<=>m>5/4
b)Để PT(1) có 2 nghiệm phân biệt thì PT(2) có duy nhất 1 nghiệm
Để PT(2) có duy nhất 1 nghiệm thì:
\(\Delta=5-4m=0\Leftrightarrow m=\frac{5}{4}\)
c)Để PT(1) có 4 nghiệm phân biệt thì PT(2) có 2 nghiệm phân biệt:
Để PT(2) có 2 nghiệm phân biệt thì:
\(\Delta=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)
Mem đây ko rành lắm sai bỏ qua
Khai bút đầu năm :)
Theo hệ thức Herong: \(S_{ABC}=\sqrt{p(p-a)(p-b)(p-c)}=\frac{\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}}{4}\)
Ta đi tìm \(\triangle ABC\) có diện tích lớn nhất, đồng nghĩa với việc cần tìm max của \(A=(a+b+c)(a+b-c)(a+c-b)(b+c-a)\)
Ta có: \(A=[(a+b+c)(a+b-c)][(c+a-b)(c-a+b)]=[(a+b)^2-c^2][c^2-(a-b)^2]\)
Áp dụng BĐT AM-GM: \(A\leq \left(\frac{(a+b)^2-(a-b)^2}{2}\right)2=(2ab)^2\leq 4^2=16\) (do \(a\leq 1\leq b\leq 2\))
\(\Rightarrow S_{ABC_{\max}}=1\). Dấu bằng xảy ra khi \((a,b,c)=(1,2,\sqrt{5})\)
Vậy tam giác $ABC$ có diện tích lớn nhất là tam giác có độ dài ba cạnh là \(1,2,\sqrt{5}\)
Lời giải
Mấu chốt của bài toán, ta sẽ CM \(r=4R\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)\)
Ta có:
Theo định lý hàm sin: \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\Rightarrow BC=2R\sin A\)
\(\Rightarrow 2R\sin A=BC=BN+NC=r\cot\left(\frac{B}{2}\right)+r\cot\left(\frac{C}{2}\right)\)
\(\Leftrightarrow 4R\sin\frac{A}{2}\cos\frac{A}{2}=r\left ( \frac{\cos\frac{B}{2}}{\sin \frac{B}{2}}+\frac{\cos\frac{C}{2}}{\sin \frac{C}{2}} \right )=r\frac{\sin\frac{B+C}{2}}{\sin\frac{B}{2}\sin\frac{C}{2}}\)
\(\Leftrightarrow 4R\sin\frac{A}{2}\cos\frac{A}{2}=r\frac{\sin\frac{180^0-A}{2}}{\sin\frac{B}{2}\sin\frac{C}{2}}=r\frac{\cos \frac{A}{2}}{\sin \frac{B}{2}\sin\frac{C}{2}}\)
\(\Rightarrow r=4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\)
Do đó BĐT chuyển về CM:
\(\sin^3\frac{A}{2}+\sin^3\frac{B}{2}+\sin^3\frac{C}{2}\geq 3\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\)
Hiển nhiên đúng theo AM-GM
Do đó ta có đpcm
Dấu $=$ xảy ra khi \(\widehat{A}=\widehat{B}=\widehat{C}\Leftrightarrow \triangle ABC\) đều
Lời giải:
Áp dụng bất đẳng thức AM_GM kết hợp với $abc=1$:
\(\frac{a}{b}+\frac{a}{c}+1\geq 3\sqrt[3]{\frac{a^2}{bc}}=3a\). Tương tự với các phân thức khác
\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3\geq 3(a+b+c)\)
Tiếp tục áp dụng AM_GM:
\(\frac{b}{a}+b^2c^2a+c\geq 3\sqrt[3]{b^3c^3}=3bc......\), công theo vế và rút gọn
\(\Rightarrow \frac{b}{a}+\frac{c}{b}+\frac{a}{c}+a+b+c\geq 2(ab+bc+ac)=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cộng hai BĐT thu được lại, ta có:
\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq 2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$
Lời giải:
1. Gọi đường thẳng cần tìm có dạng \((d):y=ax+b\)
Vì \(I(3;1)\in (d)\Rightarrow 1=3a+b\Rightarrow b=1-3a\Rightarrow y=ax+1-3a\)
Xét \((d)\cap Ox\equiv C\Rightarrow \left\{\begin{matrix} y_C=0\\ x_c=\frac{3a-1}{a}\end{matrix}\right.\)
Xét \((d)\cap Oy\equiv D\Rightarrow \left\{\begin{matrix} x_D=0\\ y_D=1-3a\end{matrix}\right.\)
Mặt khác \(CE=DE\Rightarrow \left ( \frac{3a-1}{a}-2 \right )^2+4=4+(1-3a+2)^2\)
\(\Leftrightarrow a\in \left \{ \frac{-1}{3};\frac{1}{3};1 \right \}\) \(\Rightarrow \left[ \begin{array}{ll} y=\frac{x}{3} \\ y=\frac{-x}{3}+2 \\ y=x-2 \end{array} \right.\).
Vì $D\neq E$ nên \(\left[ \begin{array}{ll} y=\frac{-x}{3}+2 \\ y=x-2 \end{array} \right.\). Đây chính là hai phương trình đường thẳng cần tìm.
2) Gọi đường thẳng cần tìm có tên là $(d')$
Vì $(d')$ đối xứng với $(d)$ qua một điểm nên \((d)\parallel (d')\Rightarrow (d'): x-2y+t=0\)
Với $M$ là một điểm trên $(d)$, chọn $M(7;1)$. Khi đó $M'\in (d')$ phải đối xứng với $M$ qua $A$, tức là $A$ là trung điểm của $MM'$
\(\Rightarrow \left\{\begin{matrix} 2=x_A=\frac{x_M+x_{M'}}{2}=\frac{7+x_{M'}}{2}\\ 1=y_A=\frac{y_M+y_{M'}}{2}=\frac{1+y_{M'}}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_{M'}=-3\\ y_{M'}=1\end{matrix}\right.\)
Vì $M'\in (d')$ nên \(-3-2+c=0\Rightarrow c=5\Rightarrow (d'):2x-y+5=0\)
Lời giải:
Ta đi CM BĐT phụ sau: \(\frac{x}{x^2+1}\leq \frac{18x}{25}+\frac{3}{50}\). \((\star)\)
\(\Leftrightarrow \) \((4x+3)(3x-1)^2\geq 0\) (đúng với mọi $x$ dương)
Do đó $(\star)$ luôn đúng. Thiết lập các BĐT tương tự với $y,z$ rồi cộng lại, ta thu được \(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\leq \frac{18}{25}+\frac{9}{50}=\frac{9}{10}\) (đpcm)
Dấu $=$ xảy ra khi $x=y=z=\frac{1}{3}$
Ta thấy:
\(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)
Áp dụng BĐT AM-GM ta có:
\(P\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)
\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\)
Dấu "="xảy ra khi \(\left\{\begin{matrix}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{matrix}\right.\)\(\Rightarrow a=b=c=\frac{1}{3}\)
Vậy \(Min_P=9\) khi \(a=b=c=\frac{1}{3}\)
Giả sử \(C\left(c;-c;-3\right)\in d_1\)
\(D\left(5d+16;d\right)\in d_2\)
\(\Rightarrow\overrightarrow{CD}=\left(5d+16-c;d+c+3\right)\)
ABCD là hình bình hành \(\Rightarrow\overrightarrow{CD}=\overrightarrow{BA}=\left(3;4\right)\)
\(\Rightarrow\begin{cases}5d+16-c=3\\d+c+3=4\end{cases}\)\(\Leftrightarrow\begin{cases}5d-c=-13\\d+c=1\end{cases}\)
\(\Leftrightarrow\begin{cases}d=-2\\c=3\end{cases}\)
\(\Rightarrow C\left(3;-6\right);D\left(6;-2\right)\)
Ta có : \(\overrightarrow{BA}=\left(3;4\right);\overrightarrow{BC}=\left(4;-3\right)\) không cùng phương => A, B, C, D không thẳng hàng => ABCD là hình bình hàng
Vậy \(C\left(3;-6\right);D\left(6;-2\right)\)
Lời giải:
Chứng minh \(xy+yz+xz-2xyz\leq \frac{7}{27}\)
Theo BDDT Schur ta có \(xyz\geq (x+y-z)(z+x-y)(y+z-x)=(1-2x)(1-2y)(1-2z)\)
\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)
Do đó \(A=xy+yz+xz-xyz\leq xy+yz+xz-\frac{8}{9}(xy+yz+xz)+\frac{2}{9}=\frac{xy+yz+zx}{9}+\frac{2}{9}\)
Theo AM-GM dễ thấy \(1=(xy+yz+xz)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow A\leq \frac{7}{27}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
Chứng minh \(xy+yz+xz-2xyz\geq 0\)
Do $x,y,z\geq 0$ nên
\(A=xy(1-z)+yz(1-x)+xz=xy(x+y)+yz(y+z)+xz\geq 0\)
Dấu bẳng xảy ra khi \((x,y,z)=(0,0,1)\) và các hoán vị của nó
Cậu thật giỏi ,cảm ơn nhiều nha .Cho mình xin nick face để cùng nhau học tập nhé Akai Haruma