1) \(\int ln^3xdx\)
2) \(\int_0^1\left(x+sin^2x\right)c\text{os}xdx\)
3)\(\int x\left(e^{2x}+\sqrt[3]{x+1}\right)dx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Phân tích:
\(I=\int\frac{x^8}{x^3+x+2}dx=\underbrace{\int (x^5-x^3-2x^2+x+4)dx}_{A}+\underbrace{\int \frac{3x^2-6x-8}{x^3+x+2}dx}_{B}\)
Có \(A=\frac{x^6}{6}-\frac{x^4}{4}-\frac{2x^3}{3}+\frac{x^2}{2}+4x+c(1)\)
\(B=\int\frac{3(x^2-x+2)-3(x+1)-11}{(x^2-x+2)(x+1)}dx\) \(=3\int\frac{dx}{x+1}-3\int\frac{dx}{x^2-x+2}-\int\frac{11dx}{x^3+x+2}\)
Đối với \(\int\frac{dx}{x^2-x+2}=\int\frac{dx}{(x-\frac{1}{2})^2+\frac{7}{4}}\) ta đặt \(x-\frac{1}{2}=\frac{\sqrt{7}}{2}\tan t\)
\(\Rightarrow \int\frac{dx}{x^2-x+2}=\frac{2\sqrt{7}}{7}\tan ^-1\left(\frac{2x-1}{\sqrt{7}}\right)+c\)
Đối với
\(\int\frac{dx}{x^3+x+2}=\int\frac{d(x^3+x+2)}{x^3+x+2}-\int\frac{3x^2dx}{x^3+x+2}=\ln|x^3+x+2|-\int\frac{3dx}{x+1}-\int\frac{3dx}{x^2-x+2}+\int\frac{9dx}{x^3+x+2}\)
\(\Rightarrow -8\int\frac{dx}{x^3+x+2}=\ln|x^3+x+2|-3\ln|x+1|-\frac{6\sqrt{7}}{7}\tan^{-1}\left(\frac{2x-1}{\sqrt{7}}\right)\)
\(\Rightarrow \int\frac{dx}{x^3+x+2}=\frac{-\ln|x^2-x+2|}{8}+\frac{\ln|x+1|}{4}+\frac{3\sqrt{7}}{28}\tan^-1\left(\frac{2x-1}{\sqrt{7}}\right)\)
Vậy \(B=\frac{\ln|x+1|}{4}+\frac{11\ln|x^2-x+2|}{8}-\frac{57\sqrt{7}}{28}\tan^-1\left(\frac{2x-1}{\sqrt{7}}\right)+c(2)\)
Từ \((1),(2)\Rightarrow I=\frac{x^6}{6}-\frac{x^4}{4}-\frac{2x^3}{3}+\frac{x^2}{2}+4x+\frac{\ln|x+1|}{4}+\frac{11\ln|x^2-x+2|}{8}-\frac{57\sqrt{7}}{28}\tan^-1\left(\frac{2x-1}{\sqrt{7}}\right)+c\)
Bài 1:
ĐKXĐ:.............
Phương trình hoành độ giao điểm của \((d)\cap (C)\):
\(2(x-m)-\frac{2x-m}{mx+1}=0\Leftrightarrow m(2x^2-2mx-1)=0\)
Nếu \(m=0\Rightarrow (d)\equiv C\) (vô lý) nên $m\neq 0$ . Do đó \(2x^2-2mx-1=0\). $(1)$
Hai điểm $A,B$ có hoành độ chính là nghiệm của phương trình $(1)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=\frac{-1}{2}\end{matrix}\right.\)
\(d(O,AB)=\frac{|-2m|}{\sqrt{5}}\); \(AB=\sqrt{(x_1-x_)^2+(y_1-y_2)^2}=\sqrt{5(m^2+2)}\)
\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=|m|\sqrt{m^2+2}\)
Mặt khác, dễ dàng tính được \(M(m,0),N(0,-2m)\) nên \(S_{OMN}=\frac{OM.ON}{2}=\frac{|m||-2m|}{2}=m^2\)
Ta có \(S_{OAB}=3S_{OMN}\Leftrightarrow |m|\sqrt{m^2+2}=3m^2\)
\(\Rightarrow m=\pm \frac{1}{2}(m\neq 0)\)
Bài 2:
Ta có \(A(1,0,1)\in (d_1);B(3,5,4)\in (d_2); \overrightarrow{u_{d_1}}=(-1,1,1);\overrightarrow{u_{d_2}}=(4,-2,1)\)
Dễ thấy \([\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]\overrightarrow{AB}\neq 0\) nên suy ra $(d_1)$ và $(d_2)$ chéo nhau
Gọi \(\overrightarrow{n_P}\) là vector pháp tuyến của mặt phẳng $(P)$
Khi đó \(\overrightarrow{n_P}=[\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]=(3,5,-2)\)
Vì $(P)$ đi qua $(d_1)$ nên $(P)$ đi qua $A$. Do đó PTMP là:
\(3(x-1)+5y-2(z-1)=0\Leftrightarrow 3x+5y-2z-1=0\)
Lời giải:
Gọi $H$ là chân đường cao kẻ từ $S$ xuống mặt phẳng $(ABC)$
Ta có \(\left\{\begin{matrix} SH\perp AB\\ SA\perp AB\end{matrix}\right.\Rightarrow AB\perp (SHA)\rightarrow AB\perp HA\)
Tương tự \(BC\perp HC\). Kết hợp với \(ABC\) vuông cân tại $B$ suy ra \(ABCH\) là hình vuông
Có \(AH\parallel (SBC)\Rightarrow d(A,(SBC))=d(H,(SBC))\)
Kẻ \(HT\perp SC\). Có \(\left\{\begin{matrix} SH\perp BC\\ HC\perp BC\end{matrix}\right.\Rightarrow BC\perp (SHC)\Rightarrow BC\perp HT\)
Do đó \(HT\perp (SBC)\Rightarrow d(H,(SBC))=HT=\sqrt{\frac{SH^2.HC^2}{SH^2+HC^2}}=\sqrt{\frac{SH^2.AB^2}{SH^2+AB^2}}=\sqrt{2}\Rightarrow SH=\sqrt{6}a\)
Từ trung điểm $O$ của $AC$ dựng trục vuông góc với mặt phẳng $(ABC)$. Trên trục đó ta lấy điểm $I$ là tâm mặt cầu ngoại tiếp.
\(IS^2=IA^2=IH^2\Leftrightarrow (\overrightarrow{IO}+\overrightarrow{OH}+\overrightarrow{HS})^2=IO^2+OH^2\)
\(\Leftrightarrow HS^2+2\overrightarrow{IO}.\overrightarrow{HS}=0\)
Do \(\overrightarrow {SH}\parallel \overrightarrow {IO}\Rightarrow \overrightarrow {IO}=k\overrightarrow{SH}\). Thay vào PT trên có $k=\frac{1}{2}$
\(\Rightarrow IO=\frac{\sqrt{6}a}{2}\Rightarrow IA=\sqrt{IO^2+AO^2}=\sqrt{3}a\)
\(\Rightarrow S_{\text{mặt cầu}}=4\pi R^2=12a^2\pi\)
Bài 1:
Gọi tọa độ của \(A=(0,0,a)\) và \(B=(m,n,p)\)
Vì $(P)$ vuông góc với $(d)$ nên \(\overrightarrow {n_P}=\overrightarrow {u_d}=(2,-1,1)\) kết hợp với $(P)$ chứa $A$ nên PTMP: \((P):2x-y+z-a=0\)
Ta có \(B\in (P)\Rightarrow 2m-n+p-a=0(1)\)
Mặt khác \(B\in (d')\Rightarrow \frac{m-1}{1}=\frac{n}{2}=\frac{p+2}{1}=t\Rightarrow \left\{\begin{matrix} m=t+1\\ n=2t\\ p=t-2\end{matrix}\right.\)
Thay vào $(1)$ ta thu được $t=a$
\(\Rightarrow AB=\sqrt{m^2+n^2+(p-a)^2}=\sqrt{(a+1)^2+(2a)^2+4}=\sqrt{5a^2+2a+5}\geq \frac{2\sqrt{30}}{5}\Leftrightarrow a=\frac{-1}{5}\)
Có nghĩa là để $AB$ min thì $a=\frac{-1}{5}$
Vậy PTMP: \(2x-y+z-\frac{1}{5}=0\)
Câu 2:
Thay toạ độ $A$ và $B$ vào $(P)$ có \([3.1-4(-1)+2-1](3.3-4.0+1-1)>0\) nên $A,B$ cùng phía so với $(P)$
Lấy $A'$ đối xứng với $A$ qua $(P)$ \(\Rightarrow MA=MA'\Rightarrow MA+MB=MA'+MB\geq A'B\)
Do đó \((MA+MB)_{\min}\Leftrightarrow A',M,B\) thẳng hàng
Biểu thị $(d)$ là đường thẳng chứa đoạn $AA'$.
Hiển nhiên \((d)\perp (P)\Rightarrow \overrightarrow{u_d}=\overrightarrow {n_P}=(3,-4,1)\)
Kết hợp với $A\in (d)$ nên \(d:\frac{x-1}{3}=\frac{y+1}{-4}=\frac{z-2}{1}=t\)
Khi đó gọi \(H\equiv AA'\cap (P)\). Dễ có \(H=(\frac{1}{13},\frac{3}{13},\frac{22}{13})\)
Lại có $H$ là trung điểm của $AA'$ nên tọa độ của $A'$ là
\(\left\{\begin{matrix} x_{A'}=2x_H-x_A=\frac{-11}{13}\\ y_{A'}=2y_H-y_A=\frac{19}{13}\\ z_{A'}=2z_H-z_A=\frac{18}{13}\end{matrix}\right.\)
Khi đó ta dễ dàng viết được PTĐT chứa $A'B$ là \(\frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\)
Tọa độ của $M$ là nghiệm của hệ
\(\left\{\begin{matrix} \frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\\ 3x-4y+z-1=0\end{matrix}\right.\Rightarrow M(\frac{-213}{79},\frac{-171}{79},\frac{34}{79})\)
.
Lời giải:
Ta có \(y'=3x^2-6mx+3(m+6)=0\) có hai nghiệm $x_1,x_2$ chính là hoành độ hai cực trị của đồ thị hàm số. Theo hệ thức Viet:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m+6\end{matrix}\right.(1)\)
Gọi đường thẳng qua hai điểm cực trị có PT \((d):y=ax+b\)
Ta có: \(\left\{\begin{matrix} y_1=ax_1+b=x_1^3-3mx_1^2+3(m+6)x_1+1\\ y_2=ax_2+b=x_2^3-3mx_2^2+3(m+6)x_2+1\end{matrix}\right.\)
Dựa vào $(1)$ và biến đổi đơn giản:
\(\Rightarrow a(x_1-x_2)=(x_1-x_2)[x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)]\)
\(\Rightarrow a=x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)=-2m^2+2m+12\)
\(\Rightarrow 2b=y_1+y_2-a(x_1+x_2)=2m^2+12m+2\Rightarrow b=m^2+6m+1\)
Do đó PTĐT thu được: \((d):y=(-2m^2+2m+12)x+m^2+6m+1\)
Lời giải:
Để hàm \(y=\sqrt{x^2-4x+m-3}\) xác định với mọi \(x\in\mathbb{R}\) thì điều kiện cần và đủ là \(x^2-4x+m-3\geq 0\forall x\in\mathbb{R}\)
\(\Leftrightarrow m\geq -x^2+4x+3\forall x\in\mathbb{R}\) hay \(m\geq (-x^2+4x+3)_{\max}=f(x)_{\max}\)
Ta có \(f'(x)=-2x+4=0\Leftrightarrow x=2\)
\(\Rightarrow f(x)_{\max}=f(2)=7\). Do đó chỉ cần $m\geq 7$ thì hàm số luôn xác định với mọi $x\in\mathbb{R}$
a)
Viết pt đường thẳng d dạng:
\(d=\left\{\begin{matrix}x=1+2t\\y=-1+t\\z=1+2t\end{matrix}\right.\)
Gọi \(H\left(1+2h;-1+h;1+2h\right)\) là hình chiếu vuông góc của I trên d
Ta có:
\(\overrightarrow{IH}\perp\overrightarrow{u_d}\Leftrightarrow\left(2h;-1+h;-2+2h\right)\left(2;1;2\right)=0\\ \Leftrightarrow9h-5=0\Leftrightarrow h=\frac{5}{9}\)
\(\overrightarrow{IH}=\left(\frac{10}{9};-\frac{4}{9};-\frac{8}{9}\right)\Rightarrow IH=\frac{2\sqrt{5}}{3}\)
b)
\(\Delta IAB\) vuông tại I và có đường cao IH, lại có IA=IB=R (R là bán kính mặt cầu (S))
Suy ra tam giác IAB vuông cân tại I \(\Rightarrow IA=IH\sqrt{2}=\frac{2\sqrt{10}}{3}\)
\(\Rightarrow R=\frac{2\sqrt{10}}{3}\)
Vậy \(\left(S\right):\left(x-1\right)^2+y^2+\left(z-3\right)^2=\frac{40}{9}\)
(Mình tính toán có thể sai, bạn tham khảo tạm cách làm nhé)
Lời giải:
(Mình không biết vẽ hình kg trên này, mong bạn thông cảm)
Trước tiên có \(BA=AM=BM=a,AC=\sqrt{3}a\)
Dễ thấy tam giác $BAM$ là tam giác đều, $SB=SM=SA$ nên $SBAM$ là hình chóp tam giác đều. Do đó chân đường cao hạ từ $S$ xuống mặt phẳng $(BAM)$ là trọng tâm của tam giác $BAM$. Đặt điểm này là $T$. Khi đó $ST$ cũng là đường cao của hình chóp $S.ABC$
Dễ thấy \(BT=\frac{\sqrt{3}a}{3};SB=\frac{\sqrt{39}a}{3}\)\(\Rightarrow ST=\sqrt{SB^2-BT^2}=2a\)
Đây chính là độ dài cần tìm
Xét \(y'=8x^3-8x=0\Leftrightarrow x\in\left \{-1;0;1\right \}\)
Do đó ta dễ dàng tìm được 3 điểm cực trị của hàm số là \(A(-1;-1),B(0;1);C(1;-1)\)
\(AB=BC=\sqrt{5};AC=2\)
Dùng hệ thức Hê-rông: \(S=\sqrt{p(p-a)(p-b)(p-c)}\Rightarrow S_{ABC}=2 (\text{đvdt})\)
Câu 1)
\(I=\int \ln ^3 xdx\). Đặt \(\left\{\begin{matrix} u=\ln ^3x\\ dv=dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{3\ln ^2x}{x}dx\\ v=x\end{matrix}\right.\)
\(\Rightarrow I=x\ln ^3x-3\int \ln^2xdx\)
Tiếp tục nguyên hàm từng phần cho \(\int \ln ^2xdx\) như trên, ta suy ra:
\(\int\ln ^2xdx=x\ln^2x-2\int \ln x dx\).
Tiếp tục nguyên hàm từng phần cho \(\int \ln xdx\Rightarrow \int \ln xdx=x\ln x-x+c\)
Do đó mà \(I=x\ln ^3x-3(x\ln^2x-2x\ln x+2x)+c\)
\(\Leftrightarrow I=x\ln^3x-3x\ln^2x+6x\ln x-6x+c\)
Câu 2)
\(I=\int ^{1}_{0}(x+\sin ^2x)\cos x dx=\int ^{1}_{0}x\cos xdx+\int ^{1}_{0}\sin^2x\cos xdx\)
Đặt \(\left\{\begin{matrix} u=x\\ dv=\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\sin x\end{matrix}\right.\Rightarrow \int x\cos xdx=x\sin x-\int \sin xdx=x\sin x+\cos x+c\)
\(\Rightarrow \int ^{1}_{0} x\cos xdx=\sin 1+\cos 1-1\)
Còn \(\int ^{1}_{0}\sin^2x\cos xdx=\int ^{1}_{0}\sin ^2xd(\sin x)=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\sin ^3x}{3}=\frac{\sin^31}{3}\)
\(\Rightarrow I=-1+\sin 1+\cos 1+\frac{\sin ^3 1}{3}\approx 0,0173\)