K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Lời giải + diễn giải

để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm

a) \(y'=3x^2-6x+m\)

xét f(x)= 3x^2 -6x+m

để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)

\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)

Kết luận với m< 3 hàm A(x) luôn có cực trị

b)

\(y'=3x^2+4mx+m\)

\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)

c)

\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)

\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)

\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)

Đề thi đánh giá năng lực

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

Để đồ thị hàm số có hai tiệm cận đứng thì phương trình $x^2-mx+1=0$ phải có hai nghiệm phân biệt khác $2$, tức là:

\(\left\{\begin{matrix} \Delta=m^2-4>0\\ f(2)=5-2m\neq 0\end{matrix}\right.\)\(\Rightarrow \begin{bmatrix} m>2\\ m<-2\end{bmatrix}\) và $m\neq\frac{5}{2}$

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Lời giải:

Theo bài ra ta có \(m^{\frac{2}{3}}n^{\frac{1}{3}}\geq 40\Rightarrow m^2n\geq 40^3\)

Số chi phí phải trả mỗi ngày là:

\(P=6m+24n\). Ta cần tìm min \(P\)

Áp dụng BĐT Cauchy ta có:

\(P=3m+3m+24n\geq 3\sqrt[3]{3m.3m.24n}=3\sqrt[3]{216m^2n}\geq 3\sqrt[3]{216.40^3}=720\)

Vậy \(P_{\min}=720(\text{USD})\) tức là chi phí ít nhất mỗi ngày phải trả là \(720 (\text{USD})\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2017

Câu a)

\(I=\int ^{1}_{0}\frac{x(e^x+1)+1}{e^x+1}dx=\int ^{1}_{0}xdx+\int ^{1}_{0}\frac{dx}{e^x+1}\)

\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2}{2}+\int ^{1}_{0}\frac{d(e^x)}{e^x(e^x+1)}=\frac{1}{2}+\left.\begin{matrix} 1\\ 0\end{matrix}\right|\ln\left | \frac{e^x}{e^x+1} \right |\)

\(\Leftrightarrow I=\frac{3}{2}+\ln 2-\ln (e+1)\)

Câu d)

\(I=\int ^{e}_{1}\ln(x+1)d(x)=\int ^{e}_{1}\ln (x+1)d(x+1)\)

Đặt \(\left\{\begin{matrix} u=\ln (x+1)\\ dv=d(x+1)\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{d(x+1)}{x+1}\\ v=x+1\end{matrix}\right.\)

\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|(x+1)\ln (x+1)-\int ^{e}_{1}d(x+1)\)

\(=(e+1)\ln \left ( \frac{e+1}{e} \right )-2\ln \left (\frac{2}{e}\right )\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2017

Câu b)

Đặt \(\tan \frac{x}{2}=t\). Ta có:

\(\left\{\begin{matrix} dt=d\left ( \tan \frac{x}{2} \right )=\frac{1}{2\cos ^2\frac{x}{2}}dx=\frac{t^2+1}{2}dx\rightarrow dx=\frac{2dt}{t^2+1}\\\ \cos x=\frac{1-t^2}{t^2+1}\end{matrix}\right.\)

\( I=\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{1}{1+\cos x}dx}_{A}+\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{d(\cos x)}{\cos x+1}}_{B}\)

\(B=\int ^{\frac{\pi}{2}}_{0}\frac{d(\cos x+1)}{\cos x+1}=\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\ln |\cos x+1|=-\ln 2\)

\(A=\int ^{1}_{0}\frac{2dt}{(t^2+1)\frac{2}{t^2+1}}=\int ^{1}_{0}dt=1\)

\(\Rightarrow I=A+B=1-\ln 2\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2017

Lời giải:

Gọi tọa độ điểm \(D=(a,b,c)\). Ta có:

\(\left\{\begin{matrix} \overrightarrow{AB}=(-4,5,-1)\\ \overrightarrow{AD}=(a-5,b-1,c-3)\\ \overrightarrow {AC}=(0,-1,1)\end{matrix}\right.\)

Theo định lý về hình bình hành:

\(\overrightarrow{AB}+\overrightarrow {AD}=\overrightarrow{AC}\Leftrightarrow (a-9,b+4,c-4)=(0,-1,1)\)

\(\Rightarrow \left\{\begin{matrix} a=9\\ b=-5\\ c=5\end{matrix}\right.\)

PTMP:

Vector pháp tuyến của mặt phẳng \(\overrightarrow{n_\alpha}=[\overrightarrow{AB},\overrightarrow{AC}]=(4,4,4)\)

\(\Rightarrow \) PTMP là:: \(4(x-5)+4(y-0)+4(z-4)=0\Leftrightarrow x+y+z-9=0\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2017

Lời giải:

Gọi \(D=(a,b,c)\). Tính toán: \(\left\{\begin{matrix} \overrightarrow{AB}=(2,2,1)\\ \overrightarrow{BC}=(2,-7,1)\\ \overrightarrow{AC}=(4,-5,2)\end{matrix}\right.\)

Thấy \(\overrightarrow{AB}.\overrightarrow{AC}=0\Rightarrow\overrightarrow{AB}\perp \overrightarrow{AC}\) nên \(A,B,C,D\) là bốn đỉnh của hình chữ nhật $ABDC$

Ta có \(\overrightarrow{AC}+\overrightarrow{AB}=\overrightarrow{AD}\Leftrightarrow (4,-5,2)+(2,2,1)=(a-2,b-1,c+3)\)

\(\Leftrightarrow \left\{\begin{matrix} a-2=6\\ b-1=-3\\ c+3=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=8\\ b=-2\\ c=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2017

Lời giải:

Đặt chung \(z=a+bi(a,b\in\mathbb{R})\)

a) \(\Leftrightarrow |a+i(b-1)|=1\Leftrightarrow a^2+(b-1)^2=1\)

Do đó tập hợp điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \((0,1)\) bán kính \(R=1\)

b) \(|\frac{z-i}{z+i}|=1\Rightarrow |z-i|=|z+i|\Leftrightarrow |a+i(b-1)|=|a+i(b+1)|\)

\(\Leftrightarrow a^2+(b-1)^2=a^2+(b+1)^2\Leftrightarrow b=0\)

Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường thẳng $y=0$ tức trục hoành

c)

\(|z|=|\overline{z}-3+4i|\Leftrightarrow |a+bi|=|(a-3)-i(b-4)|\Leftrightarrow a^2+b^2=(a-3)^2+(b-4)^2\)

\(\Rightarrow 6a+8b-25=0\)

Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường thẳng \(6x+8y-25=0\)

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Lời giải:

Gọi \((\alpha)\) là mặt phẳng chứa \((d)\) và vuông góc với \((P)\)

Khi đó vector pháp tuyến của \((\alpha): \overrightarrow{n_{\alpha}}=[\overrightarrow{n_P},\overrightarrow{u_d}]=(-4,1,7)\)

Mặt khác \((\alpha)\) chứa $(d)$ nên chứa luôn điểm \((4,1,3)\) nên PTMP \((\alpha)\) là :

\(-4x+y+7z-6=0\)

Khi đó hình chiếu \((d')\) của $(d)$ trên $(P)$ là giao của $(P)$ và \((\alpha)\)

\(\Rightarrow \overrightarrow{u_{d'}}=[\overrightarrow{n_P},\overrightarrow{n_{\alpha}}]=(22,11,11)=11(2,1,1)\)

Mặt khác \((d')=(P)\cap (\alpha)\) nên \((d') \) đi qua điểm \((0,\frac{1}{2},\frac{11}{2})\)

Do đó PT hình chiếu là:\(\frac{x}{2}=\frac{y-\frac{1}{2}}{1}=\frac{z-\frac{11}{2}}{1}\)

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Giải:

Gọi \((l)\) là mặt phẳng chứa đường thẳng đi qua $AB$ và vuông góc với mặt phẳng $(Oxy)$

\(\overrightarrow{n_l}=[\overrightarrow{AB},\overrightarrow{n_{Oxy}}]=[\overrightarrow{AB},\overrightarrow{Oz}]=(2,1,0)\)

Suy ra PTMP $(l)$ là : \(2x+y=0\)

Ta thấy \(A'B'=(Oxy)\cap (l)\)

\(\Rightarrow \overrightarrow{u_{A'B'}}=[\overrightarrow{n_{Oxy}},\overrightarrow{n_l}]=(1,-2,0)\)

Mặt khác điểm \((1,-2,0)\) thuộc đường thẳng $A'B'$

\(\Rightarrow \) PTĐT: \(\left\{{}\begin{matrix}x=t+1\\y=-2-2t\\z=0\end{matrix}\right.\)