K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 9 2017

Lời giải:

Ta có: \(y'=\frac{1}{\cos ^2x}-\frac{1}{\sin ^2x}=\frac{\sin ^2x-\cos^2x}{\sin ^2x\cos^2x}=\frac{1-2\cos^2x}{\sin ^2x\cos^2x}\)

Với \(x\in \left(0,\frac{\pi}{2}\right)\) ta chia làm hai đoạn:

+) \(x\in \left(0,\frac{\pi}{4}\right] \Rightarrow 1-2\cos^2x\leq 0\), hàm là hàm nghịch biến

+) \(x\in \left[\frac{\pi}{4},\frac{\pi}{2}\right)\Rightarrow 1-2\cos^2x\geq 0\), hàm là hàm đồng biến

Đề thi đánh giá năng lực

26 tháng 8 2017

Sao lại là tiệm cận đứng ta. M nghĩ là tiệm cận ngang chứ????

AH
Akai Haruma
Giáo viên
24 tháng 8 2017

Lời giải:

Ta có \(y=\frac{1}{3}x^3-\frac{mx^2}{2}+2x+2016\)

\(\Rightarrow y'=x^2-mx+2\)

Để hàm số luôn đồng biến trên tập xác định thì \(y'\geq 0\)

\(\Leftrightarrow x^2-mx+2\geq 0\forall x\in\mathbb{R}\)

Theo định lý về dấu của tam thức bậc 2, điều này xảy ra khi mà:

\(\Delta=m^2-8\leq 0\Leftrightarrow -2\sqrt{2}\leq m\leq 2\sqrt{2}\)

25 tháng 4 2016

13/4 bn nha

25 tháng 4 2016

13/4 tick minh nha ban

AH
Akai Haruma
Giáo viên
15 tháng 8 2017

Lời giải:

Tính toán đơn giản: \(AC=\sqrt{3}a, DB=a\)

Ý 1:

Do \(SA\perp (ABCD)\Rightarrow SA\perp AC\). Áp dụng định lý Pitago:

\( \frac{1}{d(A,SC)^2}=\frac{1}{SA^2}+\frac{1}{AC^2}\Leftrightarrow \frac{1}{a^2}=\frac{1}{SA^2}+\frac{1}{3a^2}\Rightarrow SA=\frac{\sqrt{6}}{2}a\)

\(\Rightarrow V_{\text{chóp}}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{6}a}{2}.\frac{AC.BD}{2}=\frac{\sqrt{2}a^3}{4}\)

Ý 2:

Kẻ \(AH\perp BC\) với \(H\in BC\). Có \(\left\{\begin{matrix} AH\perp BC\\ SA\perp BC\end{matrix}\right.\Rightarrow BC\perp (SAH)\)

Kẻ \(AT\perp SH\), mà \(AT\perp BC\) do \(AT\in (SAH)\) , do đó \(AT\perp (SBC)\)

\(\Rightarrow AT=d(A,(SBC))=\sqrt{\frac{SA^2.AH^2}{SA^2+AH^2}}\)

\(AH=\sin 60.AB=\frac{\sqrt{3}a}{2}\), suy ra \(d(A,(SBC))=AT=\frac{\sqrt{2}a}{2}\)

Ý 3:

Kẻ \(BK\parallel AC\) cắt $AD$ tại $K$

Ta có: \(d(SB,AC)=d(AC,(SBK))=d(A,(SBK))\)

Kẻ \(AR\perp BK\).

\(AR=AB.\sin ABK=AB.\sin BAC=AB\sin 30=\frac{a}{2}\)

Kẻ \(AM\perp SR\) thì $AM$ chính là khoảng cách từ $A$ đến $(SBK)$

\(d(A,(SBK))=AM=\sqrt{\frac{SA^2.AR^2}{SA^2+AR^2}}=\frac{\sqrt{42}a}{14}\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2017

Lời giải:

Đặt \(I=\int \frac{\sqrt{x^2-1}dx}{x^3}\)

Nguyên hàm từng phần:

Đặt \(\left\{\begin{matrix} u=\sqrt{x^2-1}\\ dv=\frac{1}{x^3}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{x}{\sqrt{x^2-1}}dx\\ v=\frac{-1}{2x^2}\end{matrix}\right.\)

\(\Rightarrow I=\frac{-\sqrt{x^2-1}}{2x^2}+\int \frac{dx}{x\sqrt{x^2-1}}\)

Xét \(\int \frac{dx}{x\sqrt{x^2-1}}=\int \frac{d(x^2)}{2x^2\sqrt{x^2-1}}\). Đặt \(\sqrt{x^2-1}=t\rightarrow x^2=t^2+1\)

Khi đó, \(\int \frac{dx}{x\sqrt{x^2-1}}=\int \frac{d(t^2+1)}{2t(t^2+1)}=\int \frac{dt}{t^2+1}\)

Đặt \(t=\tan m\), đây là một dạng toán đặt quen thuộc, ta thu

được \(\int \frac{dx}{x\sqrt{x^2-1}}=\int \frac{dt}{t^2+1}=m=\tan ^{-1}t=\tan ^{-1}(\sqrt{x^2-1})\)

Do đó, \(\int \frac{\sqrt{x^2-1}dx}{x^3}=\frac{-\sqrt{x^2-1}}{2x^2}+\frac{1}{2}\tan ^{-1}(\sqrt{x^2-1})\)

\(\Rightarrow \int ^{\sqrt{2}}_{1}\frac{\sqrt{x^2-1}}{x^3}dx=\frac{\pi}{8}-\frac{1}{4}\)

2 tháng 8 2017

Do hai khối chóp trên có chung chiều cao nên ta xét diện tích hai đáy. Xét hình vẽ sau khi tách mặt phẳng chứa đáy ABCD:

A B C D M N

Giả sử \(\dfrac{AD}{AN}=k\Rightarrow\dfrac{AB}{AM}=4-2k\), ĐK \(0< k< 2\)

Ta có \(\dfrac{S_{AMN}}{S_{ABCD}}=\dfrac{\dfrac{1}{2}AM.AN.sin\widehat{A}}{AB.AD.sin\widehat{A}}=\dfrac{1}{2}.\dfrac{1}{4-2k}.\dfrac{1}{k}=\dfrac{1}{4k\left(2-k\right)}\)

Ta thấy rằng \(\dfrac{V_1}{V}=\dfrac{S_{MBCDN}}{S_{ABCD}}=1-\dfrac{S_{AMN}}{S_{ABCD}}\)

Vậy \(\dfrac{V_1}{V}\) max khi \(\dfrac{1}{4k\left(2-k\right)}\) min

Với 0 < k < 2 thì \(min\dfrac{1}{4k\left(2-k\right)}=\dfrac{1}{4}\) khi k = 1

Vậy \(max\dfrac{V_1}{V}=\dfrac{3}{4}\) khi AN = AD và M là trung điểm AB.

AH
Akai Haruma
Giáo viên
25 tháng 7 2017

Lời giải:

Chương 4: Số phức

Trên mp tọa độ \(Oxy\) ta xét các điểm \(A(-2,1);B(4,7);C(1,-1)\). Tập hợp các điểm biểu diễn số phức $z$ là $M$

Theo bài ra ta có:

\(|z-(-2+i)|+|z-(4+7i)|=6\sqrt{2}\Leftrightarrow MA+MB=6\sqrt{2}\)

\(AB=\sqrt{(-2-4)^2+(1-7)^2}=6\sqrt{2}\Rightarrow MA+MB=AB\)

Do đó điểm \(M\) nằm trên đoạn thẳng $AB$

Đề bài yêu cầu tìm max min của \(|z-(1-i)|\), tức là tìm max, min của đoạn \(MC\)

Dựa vào hình vẽ, suy ra \(MC_{\min}=d(C,AB)\).

Do biết tọa độ $A,B$ nên dễ dàng viết được PTĐT $AB$ là : \(y=x+3\)

\(\Rightarrow MC_{\min}=d(C,AB)=\frac{|1-(-1)+3|}{\sqrt{2}}=\frac{5\sqrt{2}}{2}\)

\(M\) chỉ chạy trên đoạn $AB$ nên \(MC_{\max}=CA\) hoặc $CB$

Thấy \(CA< CB\Rightarrow CM_{\max}=CB=\sqrt{(4-1)^2+(7+1)^2}=\sqrt{73}\) khi \(M\equiv B\)

Vậy \(\left\{\begin{matrix} |z-1+i|_{\min}=\frac{5\sqrt{2}}{2}\\ |z-i+1|=\sqrt{73}\end{matrix}\right.\)

25 tháng 7 2017

Dạ em cảm ơn.

5 tháng 7 2017

Tính \(I=\int_0^{\dfrac{\pi}{2}}\dfrac{cos^{2017}x}{sin^{2017}x+cos^{2017}}dx\left(1\right)\)

Đặt \(t=cosx\Rightarrow sinx=\sqrt{1-cos^2x}\)

\(\Rightarrow dt=-sinx.dx\)

\(\Rightarrow I=\int_0^1\dfrac{t^{2017}.}{\sqrt{1-t^2}.\left(\left(\sqrt{1-t^2}\right)^{2017}+t^{2017}\right)}dt\)

Đặt: \(t=siny\Rightarrow\sqrt{1-t^2}=cosy\)

\(\Rightarrow dt=cosy.dy\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y.cosy}{cosy\left(cos^{2017}y+sin^{2017}y\right)}dy=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y}{\left(cos^{2017}y+sin^{2017}y\right)}\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x}{\left(cos^{2017}x+sin^{2017}x\right)}\left(2\right)\)

Cộng (1) và (2) ta được

\(2I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x+cos^{2017}x}{sin^{2017}x+cos^{2017}x}dx=\int_0^{\dfrac{\pi}{2}}1dx\)

\(=x|^{\dfrac{\pi}{2}}_0=\dfrac{\pi}{2}\)

\(\Rightarrow I=\dfrac{\pi}{4}\)

Thế lại bài toán ta được

\(\dfrac{\pi}{4}+t^2-6t+9-\dfrac{\pi}{4}=0\)

\(\Leftrightarrow t^2-6t+9=0\)

\(\Leftrightarrow t=3\)

Chọn đáp án C

mỗi trắc nghiệm thoy mà lm dài ntn s @@

chắc lên đó khó lắm ag